torch¶
The torch package contains data structures for multi-dimensional tensors and defines mathematical operations over these tensors. Additionally, it provides many utilities for efficient serializing of Tensors and arbitrary types, and other useful utilities.
It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0.
Tensors¶
-
torch.
is_tensor
(obj)[source]¶ Returns True if obj is a PyTorch tensor.
Note that this function is simply doing
isinstance(obj, Tensor)
. Using thatisinstance
check is better for typechecking with mypy, and more explicit - so it’s recommended to use that instead ofis_tensor
.- Parameters
obj (Object) – Object to test
-
torch.
is_storage
(obj)[source]¶ Returns True if obj is a PyTorch storage object.
- Parameters
obj (Object) – Object to test
-
torch.
set_default_dtype
(d)[source]¶ Sets the default floating point dtype to
d
. This dtype is:The inferred dtype for python floats in
torch.tensor()
.Used to infer dtype for python complex numbers. The default complex dtype is set to
torch.complex128
if default floating point dtype istorch.float64
, otherwise it’s set totorch.complex64
The default floating point dtype is initially
torch.float32
.- Parameters
d (
torch.dtype
) – the floating point dtype to make the default
Example
>>> # initial default for floating point is torch.float32 >>> torch.tensor([1.2, 3]).dtype torch.float32 >>> # initial default for floating point is torch.complex64 >>> torch.tensor([1.2, 3j]).dtype torch.complex64 >>> torch.set_default_dtype(torch.float64) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64 >>> torch.tensor([1.2, 3j]).dtype # a new complex tensor torch.complex128
-
torch.
get_default_dtype
() → torch.dtype¶ Get the current default floating point
torch.dtype
.Example:
>>> torch.get_default_dtype() # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_dtype(torch.float64) >>> torch.get_default_dtype() # default is now changed to torch.float64 torch.float64 >>> torch.set_default_tensor_type(torch.FloatTensor) # setting tensor type also affects this >>> torch.get_default_dtype() # changed to torch.float32, the dtype for torch.FloatTensor torch.float32
-
torch.
set_default_tensor_type
(t)[source]¶ Sets the default
torch.Tensor
type to floating point tensor typet
. This type will also be used as default floating point type for type inference intorch.tensor()
.The default floating point tensor type is initially
torch.FloatTensor
.- Parameters
t (type or string) – the floating point tensor type or its name
Example:
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_tensor_type(torch.DoubleTensor) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64
-
torch.
numel
(input) → int¶ Returns the total number of elements in the
input
tensor.- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 2, 3, 4, 5) >>> torch.numel(a) 120 >>> a = torch.zeros(4,4) >>> torch.numel(a) 16
-
torch.
set_printoptions
(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None)[source]¶ Set options for printing. Items shamelessly taken from NumPy
- Parameters
precision – Number of digits of precision for floating point output (default = 4).
threshold – Total number of array elements which trigger summarization rather than full repr (default = 1000).
edgeitems – Number of array items in summary at beginning and end of each dimension (default = 3).
linewidth – The number of characters per line for the purpose of inserting line breaks (default = 80). Thresholded matrices will ignore this parameter.
profile – Sane defaults for pretty printing. Can override with any of the above options. (any one of default, short, full)
sci_mode – Enable (True) or disable (False) scientific notation. If None (default) is specified, the value is defined by torch._tensor_str._Formatter. This value is automatically chosen by the framework.
-
torch.
set_flush_denormal
(mode) → bool¶ Disables denormal floating numbers on CPU.
Returns
True
if your system supports flushing denormal numbers and it successfully configures flush denormal mode.set_flush_denormal()
is only supported on x86 architectures supporting SSE3.- Parameters
mode (bool) – Controls whether to enable flush denormal mode or not
Example:
>>> torch.set_flush_denormal(True) True >>> torch.tensor([1e-323], dtype=torch.float64) tensor([ 0.], dtype=torch.float64) >>> torch.set_flush_denormal(False) True >>> torch.tensor([1e-323], dtype=torch.float64) tensor(9.88131e-324 * [ 1.0000], dtype=torch.float64)
Creation Ops¶
Note
Random sampling creation ops are listed under Random sampling and
include:
torch.rand()
torch.rand_like()
torch.randn()
torch.randn_like()
torch.randint()
torch.randint_like()
torch.randperm()
You may also use torch.empty()
with the In-place random sampling
methods to create torch.Tensor
s with values sampled from a broader
range of distributions.
-
torch.
tensor
(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor¶ Constructs a tensor with
data
.Warning
torch.tensor()
always copiesdata
. If you have a Tensordata
and want to avoid a copy, usetorch.Tensor.requires_grad_()
ortorch.Tensor.detach()
. If you have a NumPyndarray
and want to avoid a copy, usetorch.as_tensor()
.Warning
When data is a tensor x,
torch.tensor()
reads out ‘the data’ from whatever it is passed, and constructs a leaf variable. Thereforetorch.tensor(x)
is equivalent tox.clone().detach()
andtorch.tensor(x, requires_grad=True)
is equivalent tox.clone().detach().requires_grad_(True)
. The equivalents usingclone()
anddetach()
are recommended.- Parameters
data (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy
ndarray
, scalar, and other types.- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, infers data type fromdata
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.
Example:
>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]) tensor([[ 0.1000, 1.2000], [ 2.2000, 3.1000], [ 4.9000, 5.2000]]) >>> torch.tensor([0, 1]) # Type inference on data tensor([ 0, 1]) >>> torch.tensor([[0.11111, 0.222222, 0.3333333]], ... dtype=torch.float64, ... device=torch.device('cuda:0')) # creates a torch.cuda.DoubleTensor tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') >>> torch.tensor(3.14159) # Create a scalar (zero-dimensional tensor) tensor(3.1416) >>> torch.tensor([]) # Create an empty tensor (of size (0,)) tensor([])
-
torch.
sparse_coo_tensor
(indices, values, size=None, *, dtype=None, device=None, requires_grad=False) → Tensor¶ Constructs a sparse tensor in COO(rdinate) format with specified values at the given
indices
.Note
This function returns an uncoalesced tensor.
- Parameters
indices (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy
ndarray
, scalar, and other types. Will be cast to atorch.LongTensor
internally. The indices are the coordinates of the non-zero values in the matrix, and thus should be two-dimensional where the first dimension is the number of tensor dimensions and the second dimension is the number of non-zero values.values (array_like) – Initial values for the tensor. Can be a list, tuple, NumPy
ndarray
, scalar, and other types.size (list, tuple, or
torch.Size
, optional) – Size of the sparse tensor. If not provided the size will be inferred as the minimum size big enough to hold all non-zero elements.
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: if None, infers data type fromvalues
.device (
torch.device
, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> i = torch.tensor([[0, 1, 1], ... [2, 0, 2]]) >>> v = torch.tensor([3, 4, 5], dtype=torch.float32) >>> torch.sparse_coo_tensor(i, v, [2, 4]) tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3., 4., 5.]), size=(2, 4), nnz=3, layout=torch.sparse_coo) >>> torch.sparse_coo_tensor(i, v) # Shape inference tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3., 4., 5.]), size=(2, 3), nnz=3, layout=torch.sparse_coo) >>> torch.sparse_coo_tensor(i, v, [2, 4], ... dtype=torch.float64, ... device=torch.device('cuda:0')) tensor(indices=tensor([[0, 1, 1], [2, 0, 2]]), values=tensor([3., 4., 5.]), device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64, layout=torch.sparse_coo) # Create an empty sparse tensor with the following invariants: # 1. sparse_dim + dense_dim = len(SparseTensor.shape) # 2. SparseTensor._indices().shape = (sparse_dim, nnz) # 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) # # For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and # sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0)) >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1]) tensor(indices=tensor([], size=(1, 0)), values=tensor([], size=(0,)), size=(1,), nnz=0, layout=torch.sparse_coo) # and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and # sparse_dim = 1 >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2]) tensor(indices=tensor([], size=(1, 0)), values=tensor([], size=(0, 2)), size=(1, 2), nnz=0, layout=torch.sparse_coo)
-
torch.
as_tensor
(data, dtype=None, device=None) → Tensor¶ Convert the data into a torch.Tensor. If the data is already a Tensor with the same dtype and device, no copy will be performed, otherwise a new Tensor will be returned with computational graph retained if data Tensor has
requires_grad=True
. Similarly, if the data is anndarray
of the corresponding dtype and the device is the cpu, no copy will be performed.- Parameters
data (array_like) – Initial data for the tensor. Can be a list, tuple, NumPy
ndarray
, scalar, and other types.dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, infers data type fromdata
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
Example:
>>> a = numpy.array([1, 2, 3]) >>> t = torch.as_tensor(a) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3]) >>> a = numpy.array([1, 2, 3]) >>> t = torch.as_tensor(a, device=torch.device('cuda')) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([1, 2, 3])
-
torch.
from_numpy
(ndarray) → Tensor¶ Creates a
Tensor
from anumpy.ndarray
.The returned tensor and
ndarray
share the same memory. Modifications to the tensor will be reflected in thendarray
and vice versa. The returned tensor is not resizable.It currently accepts
ndarray
with dtypes ofnumpy.float64
,numpy.float32
,numpy.float16
,numpy.complex64
,numpy.complex128
,numpy.int64
,numpy.int32
,numpy.int16
,numpy.int8
,numpy.uint8
, andnumpy.bool
.Example:
>>> a = numpy.array([1, 2, 3]) >>> t = torch.from_numpy(a) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3])
-
torch.
zeros
(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument
size
.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) >>> torch.zeros(5) tensor([ 0., 0., 0., 0., 0.])
-
torch.
zeros_like
(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns a tensor filled with the scalar value 0, with the same size as
input
.torch.zeros_like(input)
is equivalent totorch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.Warning
As of 0.4, this function does not support an
out
keyword. As an alternative, the oldtorch.zeros_like(input, out=output)
is equivalent totorch.zeros(input.size(), out=output)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
Example:
>>> input = torch.empty(2, 3) >>> torch.zeros_like(input) tensor([[ 0., 0., 0.], [ 0., 0., 0.]])
-
torch.
ones
(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument
size
.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.])
-
torch.
ones_like
(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns a tensor filled with the scalar value 1, with the same size as
input
.torch.ones_like(input)
is equivalent totorch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.Warning
As of 0.4, this function does not support an
out
keyword. As an alternative, the oldtorch.ones_like(input, out=output)
is equivalent totorch.ones(input.size(), out=output)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
Example:
>>> input = torch.empty(2, 3) >>> torch.ones_like(input) tensor([[ 1., 1., 1.], [ 1., 1., 1.]])
-
torch.
arange
(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a 1-D tensor of size \(\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil\) with values from the interval
[start, end)
taken with common differencestep
beginning from start.Note that non-integer
step
is subject to floating point rounding errors when comparing againstend
; to avoid inconsistency, we advise adding a small epsilon toend
in such cases.\[\text{out}_{{i+1}} = \text{out}_{i} + \text{step} \]- Parameters
start (Number) – the starting value for the set of points. Default:
0
.end (Number) – the ending value for the set of points
step (Number) – the gap between each pair of adjacent points. Default:
1
.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, seeget_default_dtype()
. Otherwise, the dtype is inferred to be torch.int64.layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000])
-
torch.
range
(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a 1-D tensor of size \(\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1\) with values from
start
toend
with stepstep
. Step is the gap between two values in the tensor.\[\text{out}_{i+1} = \text{out}_i + \text{step}. \]Warning
This function is deprecated and will be removed in a future release because its behavior is inconsistent with Python’s range builtin. Instead, use
torch.arange()
, which produces values in [start, end).- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, seeget_default_dtype()
. Otherwise, the dtype is inferred to be torch.int64.layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.range(1, 4) tensor([ 1., 2., 3., 4.]) >>> torch.range(1, 4, 0.5) tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
-
torch.
linspace
(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Creates a one-dimensional tensor of size
steps
whose values are evenly spaced fromstart
toend
, inclusive. That is, the value are:\[(\text{start}, \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, \ldots, \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, \text{end}) \]Warning
Not providing a value for
steps
is deprecated. For backwards compatibility, not providing a value forsteps
will create a tensor with 100 elements. Note that this behavior is not reflected in the documented function signature and should not be relied on. In a future PyTorch release, failing to provide a value forsteps
will throw a runtime error.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.linspace(3, 10, steps=5) tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) >>> torch.linspace(-10, 10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=5) tensor([-10., -5., 0., 5., 10.]) >>> torch.linspace(start=-10, end=10, steps=1) tensor([-10.])
-
torch.
logspace
(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Creates a one-dimensional tensor of size
steps
whose values are evenly spaced from \({{\text{{base}}}}^{{\text{{start}}}}\) to \({{\text{{base}}}}^{{\text{{end}}}}\), inclusive, on a logarithmic scale with basebase
. That is, the values are:\[(\text{base}^{\text{start}}, \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \ldots, \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, \text{base}^{\text{end}}) \]Warning
Not providing a value for
steps
is deprecated. For backwards compatibility, not providing a value forsteps
will create a tensor with 100 elements. Note that this behavior is not reflected in the documented function signature and should not be relied on. In a future PyTorch release, failing to provide a value forsteps
will throw a runtime error.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0])
-
torch.
eye
(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Returns
A 2-D tensor with ones on the diagonal and zeros elsewhere
- Return type
Example:
>>> torch.eye(3) tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])
-
torch.
empty
(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor¶ Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument
size
.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.contiguous_format
.
Example:
>>> torch.empty(2, 3) tensor(1.00000e-08 * [[ 6.3984, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000]])
-
torch.
empty_like
(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns an uninitialized tensor with the same size as
input
.torch.empty_like(input)
is equivalent totorch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
Example:
>>> torch.empty((2,3), dtype=torch.int64) tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], [ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
-
torch.
full
(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Creates a tensor of size
size
filled withfill_value
. The tensor’s dtype is inferred fromfill_value
.- Parameters
size (int...) – a list, tuple, or
torch.Size
of integers defining the shape of the output tensor.fill_value (Scalar) – the value to fill the output tensor with.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.full((2, 3), 3.141592) tensor([[ 3.1416, 3.1416, 3.1416], [ 3.1416, 3.1416, 3.1416]])
-
torch.
full_like
(input, fill_value, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns a tensor with the same size as
input
filled withfill_value
.torch.full_like(input, fill_value)
is equivalent totorch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.fill_value – the number to fill the output tensor with.
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
Indexing, Slicing, Joining, Mutating Ops¶
-
torch.
cat
(tensors, dim=0, *, out=None) → Tensor¶ Concatenates the given sequence of
seq
tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be empty.torch.cat()
can be seen as an inverse operation fortorch.split()
andtorch.chunk()
.torch.cat()
can be best understood via examples.- Parameters
tensors (sequence of Tensors) – any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.
dim (int, optional) – the dimension over which the tensors are concatenated
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> x = torch.randn(2, 3) >>> x tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 0) tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) >>> torch.cat((x, x, x), 1) tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497]])
-
torch.
chunk
(input, chunks, dim=0) → List of Tensors¶ Splits a tensor into a specific number of chunks. Each chunk is a view of the input tensor.
Last chunk will be smaller if the tensor size along the given dimension
dim
is not divisible bychunks
.
-
torch.
gather
(input, dim, index, *, sparse_grad=False, out=None) → Tensor¶ Gathers values along an axis specified by dim.
For a 3-D tensor the output is specified by:
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
input
andindex
must have the same number of dimensions. It is also required thatindex.size(d) <= input.size(d)
for all dimensionsd != dim
.out
will have the same shape asindex
. Note thatinput
andindex
do not broadcast against each other.- Parameters
- Keyword Arguments
Example:
>>> t = torch.tensor([[1, 2], [3, 4]]) >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) tensor([[ 1, 1], [ 4, 3]])
-
torch.
index_select
(input, dim, index, *, out=None) → Tensor¶ Returns a new tensor which indexes the
input
tensor along dimensiondim
using the entries inindex
which is a LongTensor.The returned tensor has the same number of dimensions as the original tensor (
input
). Thedim
th dimension has the same size as the length ofindex
; other dimensions have the same size as in the original tensor.Note
The returned tensor does not use the same storage as the original tensor. If
out
has a different shape than expected, we silently change it to the correct shape, reallocating the underlying storage if necessary.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> x = torch.randn(3, 4) >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230, -0.6004]]) >>> indices = torch.tensor([0, 2]) >>> torch.index_select(x, 0, indices) tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-1.1734, -0.6571, 0.7230, -0.6004]]) >>> torch.index_select(x, 1, indices) tensor([[ 0.1427, -0.5414], [-0.4664, -0.1228], [-1.1734, 0.7230]])
-
torch.
masked_select
(input, mask, *, out=None) → Tensor¶ Returns a new 1-D tensor which indexes the
input
tensor according to the boolean maskmask
which is a BoolTensor.The shapes of the
mask
tensor and theinput
tensor don’t need to match, but they must be broadcastable.Note
The returned tensor does not use the same storage as the original tensor
- Parameters
input (Tensor) – the input tensor.
mask (BoolTensor) – the tensor containing the binary mask to index with
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> x = torch.randn(3, 4) >>> x tensor([[ 0.3552, -2.3825, -0.8297, 0.3477], [-1.2035, 1.2252, 0.5002, 0.6248], [ 0.1307, -2.0608, 0.1244, 2.0139]]) >>> mask = x.ge(0.5) >>> mask tensor([[False, False, False, False], [False, True, True, True], [False, False, False, True]]) >>> torch.masked_select(x, mask) tensor([ 1.2252, 0.5002, 0.6248, 2.0139])
-
torch.
narrow
(input, dim, start, length) → Tensor¶ Returns a new tensor that is a narrowed version of
input
tensor. The dimensiondim
is input fromstart
tostart + length
. The returned tensor andinput
tensor share the same underlying storage.- Parameters
Example:
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> torch.narrow(x, 0, 0, 2) tensor([[ 1, 2, 3], [ 4, 5, 6]]) >>> torch.narrow(x, 1, 1, 2) tensor([[ 2, 3], [ 5, 6], [ 8, 9]])
-
torch.
nonzero
(input, *, out=None, as_tuple=False) → LongTensor or tuple of LongTensors¶ Note
torch.nonzero(..., as_tuple=False)
(default) returns a 2-D tensor where each row is the index for a nonzero value.torch.nonzero(..., as_tuple=True)
returns a tuple of 1-D index tensors, allowing for advanced indexing, sox[x.nonzero(as_tuple=True)]
gives all nonzero values of tensorx
. Of the returned tuple, each index tensor contains nonzero indices for a certain dimension.See below for more details on the two behaviors.
When
input
is on CUDA,torch.nonzero()
causes host-device synchronization.When
as_tuple
is ``False`` (default):Returns a tensor containing the indices of all non-zero elements of
input
. Each row in the result contains the indices of a non-zero element ininput
. The result is sorted lexicographically, with the last index changing the fastest (C-style).If
input
has \(n\) dimensions, then the resulting indices tensorout
is of size \((z \times n)\), where \(z\) is the total number of non-zero elements in theinput
tensor.When
as_tuple
is ``True``:Returns a tuple of 1-D tensors, one for each dimension in
input
, each containing the indices (in that dimension) of all non-zero elements ofinput
.If
input
has \(n\) dimensions, then the resulting tuple contains \(n\) tensors of size \(z\), where \(z\) is the total number of non-zero elements in theinput
tensor.As a special case, when
input
has zero dimensions and a nonzero scalar value, it is treated as a one-dimensional tensor with one element.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (LongTensor, optional) – the output tensor containing indices
- Returns
If
as_tuple
isFalse
, the output tensor containing indices. Ifas_tuple
isTrue
, one 1-D tensor for each dimension, containing the indices of each nonzero element along that dimension.- Return type
LongTensor or tuple of LongTensor
Example:
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) tensor([[ 0], [ 1], [ 2], [ 4]]) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]])) tensor([[ 0, 0], [ 1, 1], [ 2, 2], [ 3, 3]]) >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) (tensor([0, 1, 2, 4]),) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) >>> torch.nonzero(torch.tensor(5), as_tuple=True) (tensor([0]),)
-
torch.
reshape
(input, shape) → Tensor¶ Returns a tensor with the same data and number of elements as
input
, but with the specified shape. When possible, the returned tensor will be a view ofinput
. Otherwise, it will be a copy. Contiguous inputs and inputs with compatible strides can be reshaped without copying, but you should not depend on the copying vs. viewing behavior.See
torch.Tensor.view()
on when it is possible to return a view.A single dimension may be -1, in which case it’s inferred from the remaining dimensions and the number of elements in
input
.- Parameters
input (Tensor) – the tensor to be reshaped
shape (tuple of python:ints) – the new shape
Example:
>>> a = torch.arange(4.) >>> torch.reshape(a, (2, 2)) tensor([[ 0., 1.], [ 2., 3.]]) >>> b = torch.tensor([[0, 1], [2, 3]]) >>> torch.reshape(b, (-1,)) tensor([ 0, 1, 2, 3])
-
torch.
split
(tensor, split_size_or_sections, dim=0)[source]¶ Splits the tensor into chunks. Each chunk is a view of the original tensor.
If
split_size_or_sections
is an integer type, thentensor
will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimensiondim
is not divisible bysplit_size
.If
split_size_or_sections
is a list, thentensor
will be split intolen(split_size_or_sections)
chunks with sizes indim
according tosplit_size_or_sections
.- Parameters
- Example::
>>> a = torch.arange(10).reshape(5,2) >>> a tensor([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> torch.split(a, 2) (tensor([[0, 1], [2, 3]]), tensor([[4, 5], [6, 7]]), tensor([[8, 9]])) >>> torch.split(a, [1,4]) (tensor([[0, 1]]), tensor([[2, 3], [4, 5], [6, 7], [8, 9]]))
-
torch.
squeeze
(input, dim=None, *, out=None) → Tensor¶ Returns a tensor with all the dimensions of
input
of size 1 removed.For example, if input is of shape: \((A \times 1 \times B \times C \times 1 \times D)\) then the out tensor will be of shape: \((A \times B \times C \times D)\).
When
dim
is given, a squeeze operation is done only in the given dimension. If input is of shape: \((A \times 1 \times B)\),squeeze(input, 0)
leaves the tensor unchanged, butsqueeze(input, 1)
will squeeze the tensor to the shape \((A \times B)\).Note
The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other.
Warning
If the tensor has a batch dimension of size 1, then squeeze(input) will also remove the batch dimension, which can lead to unexpected errors.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2])
-
torch.
stack
(tensors, dim=0, *, out=None) → Tensor¶ Concatenates a sequence of tensors along a new dimension.
All tensors need to be of the same size.
-
torch.
t
(input) → Tensor¶ Expects
input
to be <= 2-D tensor and transposes dimensions 0 and 1.0-D and 1-D tensors are returned as is. When input is a 2-D tensor this is equivalent to
transpose(input, 0, 1)
.- Parameters
input (Tensor) – the input tensor.
Example:
>>> x = torch.randn(()) >>> x tensor(0.1995) >>> torch.t(x) tensor(0.1995) >>> x = torch.randn(3) >>> x tensor([ 2.4320, -0.4608, 0.7702]) >>> torch.t(x) tensor([ 2.4320, -0.4608, 0.7702]) >>> x = torch.randn(2, 3) >>> x tensor([[ 0.4875, 0.9158, -0.5872], [ 0.3938, -0.6929, 0.6932]]) >>> torch.t(x) tensor([[ 0.4875, 0.3938], [ 0.9158, -0.6929], [-0.5872, 0.6932]])
-
torch.
take
(input, index) → Tensor¶ Returns a new tensor with the elements of
input
at the given indices. The input tensor is treated as if it were viewed as a 1-D tensor. The result takes the same shape as the indices.- Parameters
input (Tensor) – the input tensor.
indices (LongTensor) – the indices into tensor
Example:
>>> src = torch.tensor([[4, 3, 5], ... [6, 7, 8]]) >>> torch.take(src, torch.tensor([0, 2, 5])) tensor([ 4, 5, 8])
-
torch.
transpose
(input, dim0, dim1) → Tensor¶ Returns a tensor that is a transposed version of
input
. The given dimensionsdim0
anddim1
are swapped.The resulting
out
tensor shares its underlying storage with theinput
tensor, so changing the content of one would change the content of the other.- Parameters
Example:
>>> x = torch.randn(2, 3) >>> x tensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]]) >>> torch.transpose(x, 0, 1) tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]])
-
torch.
unbind
(input, dim=0) → seq¶ Removes a tensor dimension.
Returns a tuple of all slices along a given dimension, already without it.
Example:
>>> torch.unbind(torch.tensor([[1, 2, 3], >>> [4, 5, 6], >>> [7, 8, 9]])) (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))
-
torch.
unsqueeze
(input, dim) → Tensor¶ Returns a new tensor with a dimension of size one inserted at the specified position.
The returned tensor shares the same underlying data with this tensor.
A
dim
value within the range[-input.dim() - 1, input.dim() + 1)
can be used. Negativedim
will correspond tounsqueeze()
applied atdim
=dim + input.dim() + 1
.- Parameters
Example:
>>> x = torch.tensor([1, 2, 3, 4]) >>> torch.unsqueeze(x, 0) tensor([[ 1, 2, 3, 4]]) >>> torch.unsqueeze(x, 1) tensor([[ 1], [ 2], [ 3], [ 4]])
-
torch.
where
(condition, x, y) → Tensor¶ Return a tensor of elements selected from either
x
ory
, depending oncondition
.The operation is defined as:
\[\text{out}_i = \begin{cases} \text{x}_i & \text{if } \text{condition}_i \\ \text{y}_i & \text{otherwise} \\ \end{cases} \]Note
The tensors
condition
,x
,y
must be broadcastable.Note
Currently valid scalar and tensor combination are 1. Scalar of floating dtype and torch.double 2. Scalar of integral dtype and torch.long 3. Scalar of complex dtype and torch.complex128
- Parameters
- Returns
A tensor of shape equal to the broadcasted shape of
condition
,x
,y
- Return type
Example:
>>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64)
-
torch.
where
(condition) → tuple of LongTensor¶
torch.where(condition)
is identical totorch.nonzero(condition, as_tuple=True)
.Note
See also
torch.nonzero()
.
Random sampling¶
-
torch.
manual_seed
(seed) → torch._C.Generator[source]¶ Sets the seed for generating random numbers. Returns a torch.Generator object.
- Parameters
seed (int) – The desired seed. Value must be within the inclusive range [-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]. Otherwise, a RuntimeError is raised. Negative inputs are remapped to positive values with the formula 0xffff_ffff_ffff_ffff + seed.
-
torch.
initial_seed
() → int[source]¶ Returns the initial seed for generating random numbers as a Python long.
-
torch.
get_rng_state
() → torch.Tensor[source]¶ Returns the random number generator state as a torch.ByteTensor.
-
torch.
set_rng_state
(new_state) → None[source]¶ Sets the random number generator state.
- Parameters
new_state (torch.ByteTensor) – The desired state
-
torch.
default_generator
= <torch._C.Generator object>¶
-
torch.
bernoulli
(input, *, generator=None, out=None) → Tensor¶ Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The
input
tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values ininput
have to be in the range: \(0 \leq \text{input}_i \leq 1\).The \(\text{i}^{th}\) element of the output tensor will draw a value \(1\) according to the \(\text{i}^{th}\) probability value given in
input
.\[\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) \]The returned
out
tensor only has values 0 or 1 and is of the same shape asinput
.out
can have integraldtype
, butinput
must have floating pointdtype
.- Parameters
input (Tensor) – the input tensor of probability values for the Bernoulli distribution
- Keyword Arguments
generator (
torch.Generator
, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
Example:
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] >>> a tensor([[ 0.1737, 0.0950, 0.3609], [ 0.7148, 0.0289, 0.2676], [ 0.9456, 0.8937, 0.7202]]) >>> torch.bernoulli(a) tensor([[ 1., 0., 0.], [ 0., 0., 0.], [ 1., 1., 1.]]) >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 >>> torch.bernoulli(a) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 >>> torch.bernoulli(a) tensor([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]])
-
torch.
multinomial
(input, num_samples, replacement=False, *, generator=None, out=None) → LongTensor¶ Returns a tensor where each row contains
num_samples
indices sampled from the multinomial probability distribution located in the corresponding row of tensorinput
.Note
The rows of
input
do not need to sum to one (in which case we use the values as weights), but must be non-negative, finite and have a non-zero sum.Indices are ordered from left to right according to when each was sampled (first samples are placed in first column).
If
input
is a vector,out
is a vector of sizenum_samples
.If
input
is a matrix with m rows,out
is an matrix of shape \((m \times \text{num\_samples})\).If replacement is
True
, samples are drawn with replacement.If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row.
Note
When drawn without replacement,
num_samples
must be lower than number of non-zero elements ininput
(or the min number of non-zero elements in each row ofinput
if it is a matrix).- Parameters
- Keyword Arguments
generator (
torch.Generator
, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
Example:
>>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights >>> torch.multinomial(weights, 2) tensor([1, 2]) >>> torch.multinomial(weights, 4) # ERROR! RuntimeError: invalid argument 2: invalid multinomial distribution (with replacement=False, not enough non-negative category to sample) at ../aten/src/TH/generic/THTensorRandom.cpp:320 >>> torch.multinomial(weights, 4, replacement=True) tensor([ 2, 1, 1, 1])
-
torch.
normal
(mean, std, *, generator=None, out=None) → Tensor¶ Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given.
The
mean
is a tensor with the mean of each output element’s normal distributionThe
std
is a tensor with the standard deviation of each output element’s normal distributionThe shapes of
mean
andstd
don’t need to match, but the total number of elements in each tensor need to be the same.Note
When the shapes do not match, the shape of
mean
is used as the shape for the returned output tensor- Parameters
- Keyword Arguments
generator (
torch.Generator
, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
Example:
>>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, 8.0505, 8.1408, 9.0563, 10.0566])
Similar to the function above, but the means are shared among all drawn elements.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303])
Similar to the function above, but the standard-deviations are shared among all drawn elements.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor
Example:
>>> torch.normal(mean=torch.arange(1., 6.)) tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361])
Similar to the function above, but the means and standard deviations are shared among all drawn elements. The resulting tensor has size given by
size
.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]])
-
torch.
rand
(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a tensor filled with random numbers from a uniform distribution on the interval \([0, 1)\)
The shape of the tensor is defined by the variable argument
size
.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.rand(4) tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) >>> torch.rand(2, 3) tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]])
-
torch.
rand_like
(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns a tensor with the same size as
input
that is filled with random numbers from a uniform distribution on the interval \([0, 1)\).torch.rand_like(input)
is equivalent totorch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
-
torch.
randint
(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a tensor filled with random integers generated uniformly between
low
(inclusive) andhigh
(exclusive).The shape of the tensor is defined by the variable argument
size
.Note
With the global dtype default (
torch.float32
), this function returns a tensor with dtypetorch.int64
.- Parameters
- Keyword Arguments
generator (
torch.Generator
, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.randint(3, 5, (3,)) tensor([4, 3, 4]) >>> torch.randint(10, (2, 2)) tensor([[0, 2], [5, 5]]) >>> torch.randint(3, 10, (2, 2)) tensor([[4, 5], [6, 7]])
-
torch.
randint_like
(input, low=0, high, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns a tensor with the same shape as Tensor
input
filled with random integers generated uniformly betweenlow
(inclusive) andhigh
(exclusive).- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
-
torch.
randn
(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution).
\[\text{out}_{i} \sim \mathcal{N}(0, 1) \]The shape of the tensor is defined by the variable argument
size
.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]])
-
torch.
randn_like
(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor¶ Returns a tensor with the same size as
input
that is filled with random numbers from a normal distribution with mean 0 and variance 1.torch.randn_like(input)
is equivalent totorch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)
.- Parameters
input (Tensor) – the size of
input
will determine size of the output tensor.- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned Tensor. Default: ifNone
, defaults to the dtype ofinput
.layout (
torch.layout
, optional) – the desired layout of returned tensor. Default: ifNone
, defaults to the layout ofinput
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, defaults to the device ofinput
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.memory_format (
torch.memory_format
, optional) – the desired memory format of returned Tensor. Default:torch.preserve_format
.
-
torch.
randperm
(n, *, generator=None, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor¶ Returns a random permutation of integers from
0
ton - 1
.- Parameters
n (int) – the upper bound (exclusive)
- Keyword Arguments
generator (
torch.Generator
, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default:torch.int64
.layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False
.
Example:
>>> torch.randperm(4) tensor([2, 1, 0, 3])
In-place random sampling¶
There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation:
torch.Tensor.bernoulli_()
- in-place version oftorch.bernoulli()
torch.Tensor.cauchy_()
- numbers drawn from the Cauchy distributiontorch.Tensor.exponential_()
- numbers drawn from the exponential distributiontorch.Tensor.geometric_()
- elements drawn from the geometric distributiontorch.Tensor.log_normal_()
- samples from the log-normal distributiontorch.Tensor.normal_()
- in-place version oftorch.normal()
torch.Tensor.random_()
- numbers sampled from the discrete uniform distributiontorch.Tensor.uniform_()
- numbers sampled from the continuous uniform distribution
Serialization¶
-
torch.
save
(obj, f: Union[str, os.PathLike, BinaryIO, IO[bytes]], pickle_module=<module 'pickle' from '/Users/brandongreen/opt/anaconda3/envs/pytorch/lib/python3.6/pickle.py'>, pickle_protocol=2, _use_new_zipfile_serialization=True) → None[source]¶ Saves an object to a disk file.
See also: saving-loading-tensors
- Parameters
obj – saved object
f – a file-like object (has to implement write and flush) or a string or os.PathLike object containing a file name
pickle_module – module used for pickling metadata and objects
pickle_protocol – can be specified to override the default protocol
Note
A common PyTorch convention is to save tensors using .pt file extension.
Note
PyTorch preserves storage sharing across serialization. See preserve-storage-sharing for more details.
Note
The 1.6 release of PyTorch switched
torch.save
to use a new zipfile-based file format.torch.load
still retains the ability to load files in the old format. If for any reason you wanttorch.save
to use the old format, pass the kwarg_use_new_zipfile_serialization=False
.Example
>>> # Save to file >>> x = torch.tensor([0, 1, 2, 3, 4]) >>> torch.save(x, 'tensor.pt') >>> # Save to io.BytesIO buffer >>> buffer = io.BytesIO() >>> torch.save(x, buffer)
-
torch.
load
(f, map_location=None, pickle_module=<module 'pickle' from '/Users/brandongreen/opt/anaconda3/envs/pytorch/lib/python3.6/pickle.py'>, **pickle_load_args)[source]¶ Loads an object saved with
torch.save()
from a file.torch.load()
uses Python’s unpickling facilities but treats storages, which underlie tensors, specially. They are first deserialized on the CPU and are then moved to the device they were saved from. If this fails (e.g. because the run time system doesn’t have certain devices), an exception is raised. However, storages can be dynamically remapped to an alternative set of devices using themap_location
argument.If
map_location
is a callable, it will be called once for each serialized storage with two arguments: storage and location. The storage argument will be the initial deserialization of the storage, residing on the CPU. Each serialized storage has a location tag associated with it which identifies the device it was saved from, and this tag is the second argument passed tomap_location
. The builtin location tags are'cpu'
for CPU tensors and'cuda:device_id'
(e.g.'cuda:2'
) for CUDA tensors.map_location
should return eitherNone
or a storage. Ifmap_location
returns a storage, it will be used as the final deserialized object, already moved to the right device. Otherwise,torch.load()
will fall back to the default behavior, as ifmap_location
wasn’t specified.If
map_location
is atorch.device
object or a string containing a device tag, it indicates the location where all tensors should be loaded.Otherwise, if
map_location
is a dict, it will be used to remap location tags appearing in the file (keys), to ones that specify where to put the storages (values).User extensions can register their own location tags and tagging and deserialization methods using
torch.serialization.register_package()
.- Parameters
f – a file-like object (has to implement
read()
,readline()
,tell()
, andseek()
), or a string or os.PathLike object containing a file namemap_location – a function,
torch.device
, string or a dict specifying how to remap storage locationspickle_module – module used for unpickling metadata and objects (has to match the
pickle_module
used to serialize file)pickle_load_args – (Python 3 only) optional keyword arguments passed over to
pickle_module.load()
andpickle_module.Unpickler()
, e.g.,errors=...
.
Warning
torch.load()
usespickle
module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source, or that could have been tampered with. Only load data you trust.Note
When you call
torch.load()
on a file which contains GPU tensors, those tensors will be loaded to GPU by default. You can calltorch.load(.., map_location='cpu')
and thenload_state_dict()
to avoid GPU RAM surge when loading a model checkpoint.Note
By default, we decode byte strings as
utf-8
. This is to avoid a common error caseUnicodeDecodeError: 'ascii' codec can't decode byte 0x...
when loading files saved by Python 2 in Python 3. If this default is incorrect, you may use an extraencoding
keyword argument to specify how these objects should be loaded, e.g.,encoding='latin1'
decodes them to strings usinglatin1
encoding, andencoding='bytes'
keeps them as byte arrays which can be decoded later withbyte_array.decode(...)
.Example
>>> torch.load('tensors.pt') # Load all tensors onto the CPU >>> torch.load('tensors.pt', map_location=torch.device('cpu')) # Load all tensors onto the CPU, using a function >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage) # Load all tensors onto GPU 1 >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1)) # Map tensors from GPU 1 to GPU 0 >>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'}) # Load tensor from io.BytesIO object >>> with open('tensor.pt', 'rb') as f: ... buffer = io.BytesIO(f.read()) >>> torch.load(buffer) # Load a module with 'ascii' encoding for unpickling >>> torch.load('module.pt', encoding='ascii')
Parallelism¶
-
torch.
set_num_threads
(int)¶ Sets the number of threads used for intraop parallelism on CPU.
Warning
To ensure that the correct number of threads is used, set_num_threads must be called before running eager, JIT or autograd code.
Locally disabling gradient computation¶
The context managers torch.no_grad()
, torch.enable_grad()
, and
torch.set_grad_enabled()
are helpful for locally disabling and enabling
gradient computation. See Locally disabling gradient computation for more details on
their usage.
Examples:
>>> x = torch.zeros(1, requires_grad=True)
>>> with torch.no_grad():
... y = x * 2
>>> y.requires_grad
False
>>> is_train = False
>>> with torch.set_grad_enabled(is_train):
... y = x * 2
>>> y.requires_grad
False
>>> torch.set_grad_enabled(True) # this can also be used as a function
>>> y = x * 2
>>> y.requires_grad
True
>>> torch.set_grad_enabled(False)
>>> y = x * 2
>>> y.requires_grad
False
Math operations¶
Pointwise Ops¶
-
torch.
abs
(input, *, out=None) → Tensor¶ Computes the absolute value of each element in
input
.\[\text{out}_{i} = |\text{input}_{i}| \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.abs(torch.tensor([-1, -2, 3])) tensor([ 1, 2, 3])
-
torch.
acos
(input, *, out=None) → Tensor¶ Computes the inverse cosine of each element in
input
.\[\text{out}_{i} = \cos^{-1}(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.3348, -0.5889, 0.2005, -0.1584]) >>> torch.acos(a) tensor([ 1.2294, 2.2004, 1.3690, 1.7298])
-
torch.
add
(input, other, *, out=None)¶ Adds the scalar
other
to each element of the inputinput
and returns a new resulting tensor.\[\text{out} = \text{input} + \text{other} \]If
input
is of type FloatTensor or DoubleTensor,other
must be a real number, otherwise it should be an integer.- Parameters
input (Tensor) – the input tensor.
value (Number) – the number to be added to each element of
input
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) >>> torch.add(a, 20) tensor([ 20.0202, 21.0985, 21.3506, 19.3944])
-
torch.
add
(input, other, *, alpha=1, out=None)¶
Each element of the tensor
other
is multiplied by the scalaralpha
and added to each element of the tensorinput
. The resulting tensor is returned.The shapes of
input
andother
must be broadcastable.\[\text{out} = \text{input} + \text{alpha} \times \text{other} \]If
other
is of type FloatTensor or DoubleTensor,alpha
must be a real number, otherwise it should be an integer.- Parameters
- Keyword Arguments
alpha (Number) – the scalar multiplier for
other
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.9732, -0.3497, 0.6245, 0.4022]) >>> b = torch.randn(4, 1) >>> b tensor([[ 0.3743], [-1.7724], [-0.5811], [-0.8017]]) >>> torch.add(a, b, alpha=10) tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], [-18.6971, -18.0736, -17.0994, -17.3216], [ -6.7845, -6.1610, -5.1868, -5.4090], [ -8.9902, -8.3667, -7.3925, -7.6147]])
-
torch.
addcdiv
(input, tensor1, tensor2, *, value=1, out=None) → Tensor¶ Performs the element-wise division of
tensor1
bytensor2
, multiply the result by the scalarvalue
and add it toinput
.Warning
Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes.
\[\text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} \]The shapes of
input
,tensor1
, andtensor2
must be broadcastable.For inputs of type FloatTensor or DoubleTensor,
value
must be a real number, otherwise an integer.- Parameters
- Keyword Arguments
value (Number, optional) – multiplier for \(\text{tensor1} / \text{tensor2}\)
out (Tensor, optional) – the output tensor.
Example:
>>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcdiv(t, t1, t2, value=0.1) tensor([[-0.2312, -3.6496, 0.1312], [-1.0428, 3.4292, -0.1030], [-0.5369, -0.9829, 0.0430]])
-
torch.
addcmul
(input, tensor1, tensor2, *, value=1, out=None) → Tensor¶ Performs the element-wise multiplication of
tensor1
bytensor2
, multiply the result by the scalarvalue
and add it toinput
.\[\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i \]The shapes of
tensor
,tensor1
, andtensor2
must be broadcastable.For inputs of type FloatTensor or DoubleTensor,
value
must be a real number, otherwise an integer.- Parameters
- Keyword Arguments
value (Number, optional) – multiplier for \(tensor1 .* tensor2\)
out (Tensor, optional) – the output tensor.
Example:
>>> t = torch.randn(1, 3) >>> t1 = torch.randn(3, 1) >>> t2 = torch.randn(1, 3) >>> torch.addcmul(t, t1, t2, value=0.1) tensor([[-0.8635, -0.6391, 1.6174], [-0.7617, -0.5879, 1.7388], [-0.8353, -0.6249, 1.6511]])
-
torch.
asin
(input, *, out=None) → Tensor¶ Returns a new tensor with the arcsine of the elements of
input
.\[\text{out}_{i} = \sin^{-1}(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.5962, 1.4985, -0.4396, 1.4525]) >>> torch.asin(a) tensor([-0.6387, nan, -0.4552, nan])
-
torch.
atan
(input, *, out=None) → Tensor¶ Returns a new tensor with the arctangent of the elements of
input
.\[\text{out}_{i} = \tan^{-1}(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.2341, 0.2539, -0.6256, -0.6448]) >>> torch.atan(a) tensor([ 0.2299, 0.2487, -0.5591, -0.5727])
-
torch.
atan2
(input, other, *, out=None) → Tensor¶ Element-wise arctangent of \(\text{input}_{i} / \text{other}_{i}\) with consideration of the quadrant. Returns a new tensor with the signed angles in radians between vector \((\text{other}_{i}, \text{input}_{i})\) and vector \((1, 0)\). (Note that \(\text{other}_{i}\), the second parameter, is the x-coordinate, while \(\text{input}_{i}\), the first parameter, is the y-coordinate.)
The shapes of
input
andother
must be broadcastable.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.9041, 0.0196, -0.3108, -2.4423]) >>> torch.atan2(a, torch.randn(4)) tensor([ 0.9833, 0.0811, -1.9743, -1.4151])
-
torch.
ceil
(input, *, out=None) → Tensor¶ Returns a new tensor with the ceil of the elements of
input
, the smallest integer greater than or equal to each element.\[\text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1 \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.6341, -1.4208, -1.0900, 0.5826]) >>> torch.ceil(a) tensor([-0., -1., -1., 1.])
-
torch.
clamp
(input, min, max, *, out=None) → Tensor¶ Clamp all elements in
input
into the range [min
,max
]. Let min_value and max_value bemin
andmax
, respectively, this returns:\[y_i = \min(\max(x_i, \text{min\_value}), \text{max\_value}) \]- Parameters
input (Tensor) – the input tensor.
min (Number) – lower-bound of the range to be clamped to
max (Number) – upper-bound of the range to be clamped to
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-1.7120, 0.1734, -0.0478, -0.0922]) >>> torch.clamp(a, min=-0.5, max=0.5) tensor([-0.5000, 0.1734, -0.0478, -0.0922])
Clamps all elements in
input
to be larger or equalmin
.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
min (Number) – minimal value of each element in the output
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.0299, -2.3184, 2.1593, -0.8883]) >>> torch.clamp(a, min=0.5) tensor([ 0.5000, 0.5000, 2.1593, 0.5000])
Clamps all elements in
input
to be smaller or equalmax
.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
max (Number) – maximal value of each element in the output
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.7753, -0.4702, -0.4599, 1.1899]) >>> torch.clamp(a, max=0.5) tensor([ 0.5000, -0.4702, -0.4599, 0.5000])
-
torch.
cos
(input, *, out=None) → Tensor¶ Returns a new tensor with the cosine of the elements of
input
.\[\text{out}_{i} = \cos(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 1.4309, 1.2706, -0.8562, 0.9796]) >>> torch.cos(a) tensor([ 0.1395, 0.2957, 0.6553, 0.5574])
-
torch.
cosh
(input, *, out=None) → Tensor¶ Returns a new tensor with the hyperbolic cosine of the elements of
input
.\[\text{out}_{i} = \cosh(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.1632, 1.1835, -0.6979, -0.7325]) >>> torch.cosh(a) tensor([ 1.0133, 1.7860, 1.2536, 1.2805])
Note
When
input
is on the CPU, the implementation of torch.cosh may use the Sleef library, which rounds very large results to infinity or negative infinity. See here for details.
-
torch.
div
(input, other, *, rounding_mode=None, out=None) → Tensor¶ Divides each element of the input
input
by the corresponding element ofother
.\[\text{out}_i = \frac{\text{input}_i}{\text{other}_i} \]Note
By default, this performs a “true” division like Python 3. See the
rounding_mode
argument for floor division.Supports broadcasting to a common shape, type promotion, and integer, float, and complex inputs. Always promotes integer types to the default scalar type.
- Parameters
- Keyword Arguments
rounding_mode (str, optional) –
Type of rounding applied to the result:
None - default behavior. Performs no rounding and, if both
input
andother
are integer types, promotes the inputs to the default scalar type. Equivalent to true division in Python (the/
operator) and NumPy’snp.true_divide
."trunc"
- rounds the results of the division towards zero. Equivalent to C-style integer division."floor"
- rounds the results of the division down. Equivalent to floor division in Python (the//
operator) and NumPy’snp.floor_divide
.
out (Tensor, optional) – the output tensor.
Examples:
>>> x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) >>> torch.div(x, 0.5) tensor([ 0.7620, 2.5548, -0.5944, -0.7438, 0.9274]) >>> a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917], ... [ 0.1815, -1.0111, 0.9805, -1.5923], ... [ 0.1062, 1.4581, 0.7759, -1.2344], ... [-0.1830, -0.0313, 1.1908, -1.4757]]) >>> b = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308]) >>> torch.div(a, b) tensor([[-0.4620, -6.6051, 0.5676, 1.2639], [ 0.2260, -3.4509, -1.2086, 6.8990], [ 0.1322, 4.9764, -0.9564, 5.3484], [-0.2278, -0.1068, -1.4678, 6.3938]]) >>> torch.div(a, b, rounding_mode='trunc') tensor([[-0., -6., 0., 1.], [ 0., -3., -1., 6.], [ 0., 4., -0., 5.], [-0., -0., -1., 6.]]) >>> torch.div(a, b, rounding_mode='floor') tensor([[-1., -7., 0., 1.], [ 0., -4., -2., 6.], [ 0., 4., -1., 5.], [-1., -1., -2., 6.]])
-
torch.
digamma
(input, *, out=None) → Tensor¶ Computes the logarithmic derivative of the gamma function on input.
\[\psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} \]- Parameters
input (Tensor) – the tensor to compute the digamma function on
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Note
This function is similar to SciPy’s scipy.special.digamma.
Note
From PyTorch 1.8 onwards, the digamma function returns -Inf for 0. Previously it returned NaN for 0.
Example:
>>> a = torch.tensor([1, 0.5]) >>> torch.digamma(a) tensor([-0.5772, -1.9635])
-
torch.
erf
(input, *, out=None) → Tensor¶ Computes the error function of each element. The error function is defined as follows:
\[\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.erf(torch.tensor([0, -1., 10.])) tensor([ 0.0000, -0.8427, 1.0000])
-
torch.
erfc
(input, *, out=None) → Tensor¶ Computes the complementary error function of each element of
input
. The complementary error function is defined as follows:\[\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.erfc(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 1.8427, 0.0000])
-
torch.
erfinv
(input, *, out=None) → Tensor¶ Computes the inverse error function of each element of
input
. The inverse error function is defined in the range \((-1, 1)\) as:\[\mathrm{erfinv}(\mathrm{erf}(x)) = x \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.erfinv(torch.tensor([0, 0.5, -1.])) tensor([ 0.0000, 0.4769, -inf])
-
torch.
exp
(input, *, out=None) → Tensor¶ Returns a new tensor with the exponential of the elements of the input tensor
input
.\[y_{i} = e^{x_{i}} \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.exp(torch.tensor([0, math.log(2.)])) tensor([ 1., 2.])
-
torch.
expm1
(input, *, out=None) → Tensor¶ Returns a new tensor with the exponential of the elements minus 1 of
input
.\[y_{i} = e^{x_{i}} - 1 \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.expm1(torch.tensor([0, math.log(2.)])) tensor([ 0., 1.])
-
torch.
floor
(input, *, out=None) → Tensor¶ Returns a new tensor with the floor of the elements of
input
, the largest integer less than or equal to each element.\[\text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.8166, 1.5308, -0.2530, -0.2091]) >>> torch.floor(a) tensor([-1., 1., -1., -1.])
-
torch.
fmod
(input, other, *, out=None) → Tensor¶ Computes the element-wise remainder of division.
The dividend and divisor may contain both for integer and floating point numbers. The remainder has the same sign as the dividend
input
.Supports broadcasting to a common shape, type promotion, and integer and float inputs.
Note
When the divisor is zero, returns
NaN
for floating point dtypes on both CPU and GPU; raisesRuntimeError
for integer division by zero on CPU; Integer division by zero on GPU may return any value.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([-1., -0., -1., 1., 0., 1.]) >>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), 1.5) tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
-
torch.
frac
(input, *, out=None) → Tensor¶ Computes the fractional portion of each element in
input
.\[\text{out}_{i} = \text{input}_{i} - \left\lfloor |\text{input}_{i}| \right\rfloor * \operatorname{sgn}(\text{input}_{i}) \]Example:
>>> torch.frac(torch.tensor([1, 2.5, -3.2])) tensor([ 0.0000, 0.5000, -0.2000])
-
torch.
lerp
(input, end, weight, *, out=None)¶ Does a linear interpolation of two tensors
start
(given byinput
) andend
based on a scalar or tensorweight
and returns the resultingout
tensor.\[\text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) \]The shapes of
start
andend
must be broadcastable. Ifweight
is a tensor, then the shapes ofweight
,start
, andend
must be broadcastable.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> start = torch.arange(1., 5.) >>> end = torch.empty(4).fill_(10) >>> start tensor([ 1., 2., 3., 4.]) >>> end tensor([ 10., 10., 10., 10.]) >>> torch.lerp(start, end, 0.5) tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) >>> torch.lerp(start, end, torch.full_like(start, 0.5)) tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
-
torch.
log
(input, *, out=None) → Tensor¶ Returns a new tensor with the natural logarithm of the elements of
input
.\[y_{i} = \log_{e} (x_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(5) >>> a tensor([-0.7168, -0.5471, -0.8933, -1.4428, -0.1190]) >>> torch.log(a) tensor([ nan, nan, nan, nan, nan])
-
torch.
log10
(input, *, out=None) → Tensor¶ Returns a new tensor with the logarithm to the base 10 of the elements of
input
.\[y_{i} = \log_{10} (x_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.rand(5) >>> a tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251]) >>> torch.log10(a) tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476])
-
torch.
log1p
(input, *, out=None) → Tensor¶ Returns a new tensor with the natural logarithm of (1 +
input
).\[y_i = \log_{e} (x_i + 1) \]Note
This function is more accurate than
torch.log()
for small values ofinput
- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(5) >>> a tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492]) >>> torch.log1p(a) tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225])
-
torch.
log2
(input, *, out=None) → Tensor¶ Returns a new tensor with the logarithm to the base 2 of the elements of
input
.\[y_{i} = \log_{2} (x_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.rand(5) >>> a tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490]) >>> torch.log2(a) tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504])
-
torch.
mul
(input, other, *, out=None)¶ Multiplies each element of the input
input
with the scalarother
and returns a new resulting tensor.\[\text{out}_i = \text{other} \times \text{input}_i \]If
input
is of type FloatTensor or DoubleTensor,other
should be a real number, otherwise it should be an integer- Parameters
{input} –
other (Number) – the number to be multiplied to each element of
input
- Keyword Arguments
{out} –
Example:
>>> a = torch.randn(3) >>> a tensor([ 0.2015, -0.4255, 2.6087]) >>> torch.mul(a, 100) tensor([ 20.1494, -42.5491, 260.8663])
-
torch.
mul
(input, other, *, out=None)¶
Each element of the tensor
input
is multiplied by the corresponding element of the Tensorother
. The resulting tensor is returned.The shapes of
input
andother
must be broadcastable.\[\text{out}_i = \text{input}_i \times \text{other}_i \]- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 1) >>> a tensor([[ 1.1207], [-0.3137], [ 0.0700], [ 0.8378]]) >>> b = torch.randn(1, 4) >>> b tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]]) >>> torch.mul(a, b) tensor([[ 0.5767, 0.1363, -0.5877, 2.5083], [-0.1614, -0.0382, 0.1645, -0.7021], [ 0.0360, 0.0085, -0.0367, 0.1567], [ 0.4312, 0.1019, -0.4394, 1.8753]])
-
torch.
mvlgamma
(input, p) → Tensor¶ Computes the multivariate log-gamma function) with dimension \(p\) element-wise, given by
\[\log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right) \]where \(C = \log(\pi) \times \frac{p (p - 1)}{4}\) and \(\Gamma(\cdot)\) is the Gamma function.
All elements must be greater than \(\frac{p - 1}{2}\), otherwise an error would be thrown.
- Parameters
Example:
>>> a = torch.empty(2, 3).uniform_(1, 2) >>> a tensor([[1.6835, 1.8474, 1.1929], [1.0475, 1.7162, 1.4180]]) >>> torch.mvlgamma(a, 2) tensor([[0.3928, 0.4007, 0.7586], [1.0311, 0.3901, 0.5049]])
-
torch.
neg
(input, *, out=None) → Tensor¶ Returns a new tensor with the negative of the elements of
input
.\[\text{out} = -1 \times \text{input} \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(5) >>> a tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) >>> torch.neg(a) tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940])
-
torch.
pow
(input, exponent, *, out=None) → Tensor¶ Takes the power of each element in
input
withexponent
and returns a tensor with the result.exponent
can be either a singlefloat
number or a Tensor with the same number of elements asinput
.When
exponent
is a scalar value, the operation applied is:\[\text{out}_i = x_i ^ \text{exponent} \]When
exponent
is a tensor, the operation applied is:\[\text{out}_i = x_i ^ {\text{exponent}_i} \]When
exponent
is a tensor, the shapes ofinput
andexponent
must be broadcastable.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.])
self
is a scalarfloat
value, andexponent
is a tensor. The returned tensorout
is of the same shape asexponent
The operation applied is:
\[\text{out}_i = \text{self} ^ {\text{exponent}_i} \]- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.])
-
torch.
reciprocal
(input, *, out=None) → Tensor¶ Returns a new tensor with the reciprocal of the elements of
input
Note
Unlike NumPy’s reciprocal, torch.reciprocal supports integral inputs. Integral inputs to reciprocal are automatically promoted to the default scalar type.
\[\text{out}_{i} = \frac{1}{\text{input}_{i}} \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.4595, -2.1219, -1.4314, 0.7298]) >>> torch.reciprocal(a) tensor([-2.1763, -0.4713, -0.6986, 1.3702])
-
torch.
remainder
(input, other, *, out=None) → Tensor¶ Computes the element-wise remainder of division.
The dividend and divisor may contain both for integer and floating point numbers. The remainder has the same sign as the divisor
other
.Supports broadcasting to a common shape, type promotion, and integer and float inputs.
Note
Complex inputs are not supported. In some cases, it is not mathematically possible to satisfy the definition of a modulo operation with complex numbers. See
torch.fmod()
for how division by zero is handled.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) tensor([ 1., 0., 1., 1., 0., 1.]) >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), 1.5) tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
See also
torch.fmod()
, which computes the element-wise remainder of division equivalently to the C library functionfmod()
.
-
torch.
round
(input, *, out=None) → Tensor¶ Returns a new tensor with each of the elements of
input
rounded to the closest integer.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.9920, 0.6077, 0.9734, -1.0362]) >>> torch.round(a) tensor([ 1., 1., 1., -1.])
-
torch.
rsqrt
(input, *, out=None) → Tensor¶ Returns a new tensor with the reciprocal of the square-root of each of the elements of
input
.\[\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.0370, 0.2970, 1.5420, -0.9105]) >>> torch.rsqrt(a) tensor([ nan, 1.8351, 0.8053, nan])
-
torch.
sigmoid
(input, *, out=None) → Tensor¶ Returns a new tensor with the sigmoid of the elements of
input
.\[\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.9213, 1.0887, -0.8858, -1.7683]) >>> torch.sigmoid(a) tensor([ 0.7153, 0.7481, 0.2920, 0.1458])
-
torch.
sign
(input, *, out=None) → Tensor¶ Returns a new tensor with the signs of the elements of
input
.\[\text{out}_{i} = \operatorname{sgn}(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.tensor([0.7, -1.2, 0., 2.3]) >>> a tensor([ 0.7000, -1.2000, 0.0000, 2.3000]) >>> torch.sign(a) tensor([ 1., -1., 0., 1.])
-
torch.
sin
(input, *, out=None) → Tensor¶ Returns a new tensor with the sine of the elements of
input
.\[\text{out}_{i} = \sin(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-0.5461, 0.1347, -2.7266, -0.2746]) >>> torch.sin(a) tensor([-0.5194, 0.1343, -0.4032, -0.2711])
-
torch.
sinh
(input, *, out=None) → Tensor¶ Returns a new tensor with the hyperbolic sine of the elements of
input
.\[\text{out}_{i} = \sinh(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.5380, -0.8632, -0.1265, 0.9399]) >>> torch.sinh(a) tensor([ 0.5644, -0.9744, -0.1268, 1.0845])
Note
When
input
is on the CPU, the implementation of torch.sinh may use the Sleef library, which rounds very large results to infinity or negative infinity. See here for details.
-
torch.
sqrt
(input, *, out=None) → Tensor¶ Returns a new tensor with the square-root of the elements of
input
.\[\text{out}_{i} = \sqrt{\text{input}_{i}} \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-2.0755, 1.0226, 0.0831, 0.4806]) >>> torch.sqrt(a) tensor([ nan, 1.0112, 0.2883, 0.6933])
-
torch.
tan
(input, *, out=None) → Tensor¶ Returns a new tensor with the tangent of the elements of
input
.\[\text{out}_{i} = \tan(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([-1.2027, -1.7687, 0.4412, -1.3856]) >>> torch.tan(a) tensor([-2.5930, 4.9859, 0.4722, -5.3366])
-
torch.
tanh
(input, *, out=None) → Tensor¶ Returns a new tensor with the hyperbolic tangent of the elements of
input
.\[\text{out}_{i} = \tanh(\text{input}_{i}) \]- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.8986, -0.7279, 1.1745, 0.2611]) >>> torch.tanh(a) tensor([ 0.7156, -0.6218, 0.8257, 0.2553])
-
torch.
trunc
(input, *, out=None) → Tensor¶ Returns a new tensor with the truncated integer values of the elements of
input
.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 3.4742, 0.5466, -0.8008, -0.9079]) >>> torch.trunc(a) tensor([ 3., 0., -0., -0.])
Reduction Ops¶
-
torch.
argmax
(input) → LongTensor¶ Returns the indices of the maximum value of all elements in the
input
tensor.This is the second value returned by
torch.max()
. See its documentation for the exact semantics of this method.Note
If there are multiple minimal values then the indices of the first minimal value are returned.
- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], [-0.7401, -0.8805, -0.3402, -1.1936], [ 0.4907, -1.3948, -1.0691, -0.3132], [-1.6092, 0.5419, -0.2993, 0.3195]]) >>> torch.argmax(a) tensor(0)
-
torch.
argmax
(input, dim, keepdim=False) → LongTensor¶
Returns the indices of the maximum values of a tensor across a dimension.
This is the second value returned by
torch.max()
. See its documentation for the exact semantics of this method.- Parameters
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], [-0.7401, -0.8805, -0.3402, -1.1936], [ 0.4907, -1.3948, -1.0691, -0.3132], [-1.6092, 0.5419, -0.2993, 0.3195]]) >>> torch.argmax(a, dim=1) tensor([ 0, 2, 0, 1])
-
torch.
argmin
(input, dim=None, keepdim=False) → LongTensor¶ Returns the indices of the minimum value(s) of the flattened tensor or along a dimension
This is the second value returned by
torch.min()
. See its documentation for the exact semantics of this method.Note
If there are multiple minimal values then the indices of the first minimal value are returned.
- Parameters
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.1139, 0.2254, -0.1381, 0.3687], [ 1.0100, -1.1975, -0.0102, -0.4732], [-0.9240, 0.1207, -0.7506, -1.0213], [ 1.7809, -1.2960, 0.9384, 0.1438]]) >>> torch.argmin(a) tensor(13) >>> torch.argmin(a, dim=1) tensor([ 2, 1, 3, 1]) >>> torch.argmin(a, dim=1, keepdim=True) tensor([[2], [1], [3], [1]])
-
torch.
cumprod
(input, dim, *, dtype=None, out=None) → Tensor¶ Returns the cumulative product of elements of
input
in the dimensiondim
.For example, if
input
is a vector of size N, the result will also be a vector of size N, with elements.\[y_i = x_1 \times x_2\times x_3\times \dots \times x_i \]- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(10) >>> a tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, -0.2129, -0.4206, 0.1968]) >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, 0.0014, -0.0006, -0.0001]) >>> a[5] = 0.0 >>> torch.cumprod(a, dim=0) tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, 0.0000, -0.0000, -0.0000])
-
torch.
cumsum
(input, dim, *, dtype=None, out=None) → Tensor¶ Returns the cumulative sum of elements of
input
in the dimensiondim
.For example, if
input
is a vector of size N, the result will also be a vector of size N, with elements.\[y_i = x_1 + x_2 + x_3 + \dots + x_i \]- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(10) >>> a tensor([-0.8286, -0.4890, 0.5155, 0.8443, 0.1865, -0.1752, -2.0595, 0.1850, -1.1571, -0.4243]) >>> torch.cumsum(a, dim=0) tensor([-0.8286, -1.3175, -0.8020, 0.0423, 0.2289, 0.0537, -2.0058, -1.8209, -2.9780, -3.4022])
-
torch.
dist
(input, other, p=2) → Tensor¶ Returns the p-norm of (
input
-other
)The shapes of
input
andother
must be broadcastable.- Parameters
Example:
>>> x = torch.randn(4) >>> x tensor([-1.5393, -0.8675, 0.5916, 1.6321]) >>> y = torch.randn(4) >>> y tensor([ 0.0967, -1.0511, 0.6295, 0.8360]) >>> torch.dist(x, y, 3.5) tensor(1.6727) >>> torch.dist(x, y, 3) tensor(1.6973) >>> torch.dist(x, y, 0) tensor(inf) >>> torch.dist(x, y, 1) tensor(2.6537)
-
torch.
logsumexp
(input, dim, keepdim=False, *, out=None)¶ Returns the log of summed exponentials of each row of the
input
tensor in the given dimensiondim
. The computation is numerically stabilized.For summation index \(j\) given by dim and other indices \(i\), the result is
\[\text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) \]If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Example::
>>> a = torch.randn(3, 3) >>> torch.logsumexp(a, 1) tensor([ 0.8442, 1.4322, 0.8711])
-
torch.
mean
(input) → Tensor¶ Returns the mean value of all elements in the
input
tensor.- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.2294, -0.5481, 1.3288]]) >>> torch.mean(a) tensor(0.3367)
Returns the mean value of each row of the
input
tensor in the given dimensiondim
. Ifdim
is a list of dimensions, reduce over all of them.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279], [-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]]) >>> torch.mean(a, 1) tensor([-0.0163, -0.5085, -0.4599, 0.1807]) >>> torch.mean(a, 1, True) tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]])
-
torch.
median
(input) → Tensor¶ Returns the median of the values in
input
.Note
The median is not unique for
input
tensors with an even number of elements. In this case the lower of the two medians is returned. To compute the mean of both medians, usetorch.quantile()
withq=0.5
instead.Warning
This function produces deterministic (sub)gradients unlike
median(dim=0)
- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 1.5219, -1.5212, 0.2202]]) >>> torch.median(a) tensor(0.2202)
-
torch.
median
(input, dim=- 1, keepdim=False, *, out=None)¶
Returns a namedtuple
(values, indices)
wherevalues
contains the median of each row ofinput
in the dimensiondim
, andindices
contains the index of the median values found in the dimensiondim
.By default,
dim
is the last dimension of theinput
tensor.If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the outputs tensor having 1 fewer dimension thaninput
.Note
The median is not unique for
input
tensors with an even number of elements in the dimensiondim
. In this case the lower of the two medians is returned. To compute the mean of both medians ininput
, usetorch.quantile()
withq=0.5
instead.Warning
indices
does not necessarily contain the first occurrence of each median value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general. For the same reason do not expect the gradients to be deterministic.- Parameters
- Keyword Arguments
out ((Tensor, Tensor), optional) – The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension
dim
ofinput
.
Example:
>>> a = torch.randn(4, 5) >>> a tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) >>> torch.median(a, 1) torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3]))
-
torch.
mode
(input, dim=- 1, keepdim=False, *, out=None)¶ Returns a namedtuple
(values, indices)
wherevalues
is the mode value of each row of theinput
tensor in the given dimensiondim
, i.e. a value which appears most often in that row, andindices
is the index location of each mode value found.By default,
dim
is the last dimension of theinput
tensor.If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Note
This function is not defined for
torch.cuda.Tensor
yet.- Parameters
- Keyword Arguments
out (tuple, optional) – the result tuple of two output tensors (values, indices)
Example:
>>> a = torch.randint(10, (5,)) >>> a tensor([6, 5, 1, 0, 2]) >>> b = a + (torch.randn(50, 1) * 5).long() >>> torch.mode(b, 0) torch.return_types.mode(values=tensor([6, 5, 1, 0, 2]), indices=tensor([2, 2, 2, 2, 2]))
-
torch.
norm
(input, p='fro', dim=None, keepdim=False, out=None, dtype=None)[source]¶ Returns the matrix norm or vector norm of a given tensor.
Warning
torch.norm is deprecated and may be removed in a future PyTorch release. Use
torch.linalg.norm()
instead, but note thattorch.linalg.norm()
has a different signature and slightly different behavior that is more consistent with NumPy’s numpy.linalg.norm.- Parameters
input (Tensor) – The input tensor. Its data type must be either a floating point or complex type. For complex inputs, the norm is calculated using the absolute value of each element. If the input is complex and neither
dtype
norout
is specified, the result’s data type will be the corresponding floating point type (e.g. float ifinput
is complexfloat).p (int, float, inf, -inf, 'fro', 'nuc', optional) –
the order of norm. Default:
'fro'
The following norms can be calculated:ord
matrix norm
vector norm
’fro’
Frobenius norm
–
‘nuc’
nuclear norm
–
Number
–
sum(abs(x)**ord)**(1./ord)
The vector norm can be calculated across any number of dimensions. The corresponding dimensions of
input
are flattened into one dimension, and the norm is calculated on the flattened dimension.Frobenius norm produces the same result as
p=2
in all cases except whendim
is a list of three or more dims, in which case Frobenius norm throws an error.Nuclear norm can only be calculated across exactly two dimensions.
dim (int, tuple of python:ints, list of python:ints, optional) – Specifies which dimension or dimensions of
input
to calculate the norm across. Ifdim
isNone
, the norm will be calculated across all dimensions ofinput
. If the norm type indicated byp
does not support the specified number of dimensions, an error will occur.keepdim (bool, optional) – whether the output tensors have
dim
retained or not. Ignored ifdim
=None
andout
=None
. Default:False
out (Tensor, optional) – the output tensor. Ignored if
dim
=None
andout
=None
.dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to :attr:’dtype’ while performing the operation. Default: None.
Note
Even though
p='fro'
supports any number of dimensions, the true mathematical definition of Frobenius norm only applies to tensors with exactly two dimensions.torch.linalg.norm()
withord='fro'
aligns with the mathematical definition, since it can only be applied across exactly two dimensions.Example:
>>> import torch >>> a = torch.arange(9, dtype= torch.float) - 4 >>> b = a.reshape((3, 3)) >>> torch.norm(a) tensor(7.7460) >>> torch.norm(b) tensor(7.7460) >>> torch.norm(a, float('inf')) tensor(4.) >>> torch.norm(b, float('inf')) tensor(4.) >>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float) >>> torch.norm(c, dim=0) tensor([1.4142, 2.2361, 5.0000]) >>> torch.norm(c, dim=1) tensor([3.7417, 4.2426]) >>> torch.norm(c, p=1, dim=1) tensor([6., 6.]) >>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2) >>> torch.norm(d, dim=(1,2)) tensor([ 3.7417, 11.2250]) >>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :]) (tensor(3.7417), tensor(11.2250))
-
torch.
prod
(input, *, dtype=None) → Tensor¶ Returns the product of all elements in the
input
tensor.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[-0.8020, 0.5428, -1.5854]]) >>> torch.prod(a) tensor(0.6902)
Returns the product of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimensiondim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 fewer dimension thaninput
.- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> a = torch.randn(4, 2) >>> a tensor([[ 0.5261, -0.3837], [ 1.1857, -0.2498], [-1.1646, 0.0705], [ 1.1131, -1.0629]]) >>> torch.prod(a, 1) tensor([-0.2018, -0.2962, -0.0821, -1.1831])
-
torch.
std
(input, unbiased=True) → Tensor¶ Returns the standard-deviation of all elements in the
input
tensor.If
unbiased
isFalse
, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.- Parameters
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[-0.8166, -1.3802, -0.3560]]) >>> torch.std(a) tensor(0.5130)
Returns the standard-deviation of each row of the
input
tensor in the dimensiondim
. Ifdim
is a list of dimensions, reduce over all of them.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).If
unbiased
isFalse
, then the standard-deviation will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.2035, 1.2959, 1.8101, -0.4644], [ 1.5027, -0.3270, 0.5905, 0.6538], [-1.5745, 1.3330, -0.5596, -0.6548], [ 0.1264, -0.5080, 1.6420, 0.1992]]) >>> torch.std(a, dim=1) tensor([ 1.0311, 0.7477, 1.2204, 0.9087])
-
torch.
sum
(input, *, dtype=None) → Tensor¶ Returns the sum of all elements in the
input
tensor.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.1133, -0.9567, 0.2958]]) >>> torch.sum(a) tensor(-0.5475)
Returns the sum of each row of the
input
tensor in the given dimensiondim
. Ifdim
is a list of dimensions, reduce over all of them.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtype
before the operation is performed. This is useful for preventing data type overflows. Default: None.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], [-0.2993, 0.9138, 0.9337, -1.6864], [ 0.1132, 0.7892, -0.1003, 0.5688], [ 0.3637, -0.9906, -0.4752, -1.5197]]) >>> torch.sum(a, 1) tensor([-0.4598, -0.1381, 1.3708, -2.6217]) >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) >>> torch.sum(b, (2, 1)) tensor([ 435., 1335., 2235., 3135.])
-
torch.
unique
(*args, **kwargs)¶ Returns the unique elements of the input tensor.
Note
This function is different from
torch.unique_consecutive()
in the sense that this function also eliminates non-consecutive duplicate values.Note
Currently in the CUDA implementation and the CPU implementation when dim is specified, torch.unique always sort the tensor at the beginning regardless of the sort argument. Sorting could be slow, so if your input tensor is already sorted, it is recommended to use
torch.unique_consecutive()
which avoids the sorting.- Parameters
input (Tensor) – the input tensor
sorted (bool) – Whether to sort the unique elements in ascending order before returning as output.
return_inverse (bool) – Whether to also return the indices for where elements in the original input ended up in the returned unique list.
return_counts (bool) – Whether to also return the counts for each unique element.
dim (int) – the dimension to apply unique. If
None
, the unique of the flattened input is returned. default:None
- Returns
A tensor or a tuple of tensors containing
output (Tensor): the output list of unique scalar elements.
inverse_indices (Tensor): (optional) if
return_inverse
is True, there will be an additional returned tensor (same shape as input) representing the indices for where elements in the original input map to in the output; otherwise, this function will only return a single tensor.counts (Tensor): (optional) if
return_counts
is True, there will be an additional returned tensor (same shape as output or output.size(dim), if dim was specified) representing the number of occurrences for each unique value or tensor.
- Return type
Example:
>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long)) >>> output tensor([ 2, 3, 1]) >>> output, inverse_indices = torch.unique( ... torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True) >>> output tensor([ 1, 2, 3]) >>> inverse_indices tensor([ 0, 2, 1, 2]) >>> output, inverse_indices = torch.unique( ... torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True) >>> output tensor([ 1, 2, 3]) >>> inverse_indices tensor([[ 0, 2], [ 1, 2]])
-
torch.
var
(input, unbiased=True) → Tensor¶ Returns the variance of all elements in the
input
tensor.If
unbiased
isFalse
, then the variance will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.- Parameters
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[-0.3425, -1.2636, -0.4864]]) >>> torch.var(a) tensor(0.2455)
Returns the variance of each row of the
input
tensor in the given dimensiondim
.If
keepdim
isTrue
, the output tensor is of the same size asinput
except in the dimension(s)dim
where it is of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensor having 1 (orlen(dim)
) fewer dimension(s).If
unbiased
isFalse
, then the variance will be calculated via the biased estimator. Otherwise, Bessel’s correction will be used.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-0.3567, 1.7385, -1.3042, 0.7423], [ 1.3436, -0.1015, -0.9834, -0.8438], [ 0.6056, 0.1089, -0.3112, -1.4085], [-0.7700, 0.6074, -0.1469, 0.7777]]) >>> torch.var(a, 1) tensor([ 1.7444, 1.1363, 0.7356, 0.5112])
Comparison Ops¶
-
torch.
allclose
(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) → bool¶ This function checks if all
input
andother
satisfy the condition:\[\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert \]elementwise, for all elements of
input
andother
. The behaviour of this function is analogous to numpy.allclose- Parameters
Example:
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) False >>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09])) True >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')])) False >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True) True
-
torch.
argsort
(input, dim=- 1, descending=False) → LongTensor¶ Returns the indices that sort a tensor along a given dimension in ascending order by value.
This is the second value returned by
torch.sort()
. See its documentation for the exact semantics of this method.- Parameters
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], [ 0.1598, 0.0788, -0.0745, -1.2700], [ 1.2208, 1.0722, -0.7064, 1.2564], [ 0.0669, -0.2318, -0.8229, -0.9280]]) >>> torch.argsort(a, dim=1) tensor([[2, 0, 3, 1], [3, 2, 1, 0], [2, 1, 0, 3], [3, 2, 1, 0]])
-
torch.
eq
(input, other, *, out=None) → Tensor¶ Computes element-wise equality
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
A boolean tensor that is True where
input
is equal toother
and False elsewhere
Example:
>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[ True, False], [False, True]])
-
torch.
equal
(input, other) → bool¶ True
if two tensors have the same size and elements,False
otherwise.Example:
>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2])) True
-
torch.
ge
(input, other, *, out=None) → Tensor¶ Computes \(\text{input} \geq \text{other}\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
A boolean tensor that is True where
input
is greater than or equal toother
and False elsewhere
Example:
>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, True], [False, True]])
-
torch.
gt
(input, other, *, out=None) → Tensor¶ Computes \(\text{input} > \text{other}\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
A boolean tensor that is True where
input
is greater thanother
and False elsewhere
Example:
>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [False, False]])
-
torch.
isfinite
(input) → Tensor¶ Returns a new tensor with boolean elements representing if each element is finite or not.
Real values are finite when they are not NaN, negative infinity, or infinity. Complex values are finite when both their real and imaginary parts are finite.
- Args:
input (Tensor): the input tensor.
- Returns:
A boolean tensor that is True where
input
is finite and False elsewhere
Example:
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([True, False, True, False, False])
-
torch.
isinf
(input) → Tensor¶ Tests if each element of
input
is infinite (positive or negative infinity) or not.Note
Complex values are infinite when their real or imaginary part is infinite.
- Args:
{input}
- Returns:
A boolean tensor that is True where
input
is infinite and False elsewhere
Example:
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([False, True, False, True, False])
-
torch.
isnan
(input) → Tensor¶ Returns a new tensor with boolean elements representing if each element of
input
is NaN or not. Complex values are considered NaN when either their real and/or imaginary part is NaN.- Parameters
input (Tensor) – the input tensor.
- Returns
A boolean tensor that is True where
input
is NaN and False elsewhere
Example:
>>> torch.isnan(torch.tensor([1, float('nan'), 2])) tensor([False, True, False])
-
torch.
kthvalue
(input, k, dim=None, keepdim=False, *, out=None)¶ Returns a namedtuple
(values, indices)
wherevalues
is thek
th smallest element of each row of theinput
tensor in the given dimensiondim
. Andindices
is the index location of each element found.If
dim
is not given, the last dimension of the input is chosen.If
keepdim
isTrue
, both thevalues
andindices
tensors are the same size asinput
, except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in both thevalues
andindices
tensors having 1 fewer dimension than theinput
tensor.Note
When
input
is a CUDA tensor and there are multiple validk
th values, this function may nondeterministically returnindices
for any of them.- Parameters
- Keyword Arguments
out (tuple, optional) – the output tuple of (Tensor, LongTensor) can be optionally given to be used as output buffers
Example:
>>> x = torch.arange(1., 6.) >>> x tensor([ 1., 2., 3., 4., 5.]) >>> torch.kthvalue(x, 4) torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) >>> x=torch.arange(1.,7.).resize_(2,3) >>> x tensor([[ 1., 2., 3.], [ 4., 5., 6.]]) >>> torch.kthvalue(x, 2, 0, True) torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))
-
torch.
le
(input, other, *, out=None) → Tensor¶ Computes \(\text{input} \leq \text{other}\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
A boolean tensor that is True where
input
is less than or equal toother
and False elsewhere
Example:
>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, False], [True, True]])
-
torch.
lt
(input, other, *, out=None) → Tensor¶ Computes \(\text{input} < \text{other}\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
A boolean tensor that is True where
input
is less thanother
and False elsewhere
Example:
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, False], [True, False]])
-
torch.
max
(input) → Tensor¶ Returns the maximum value of all elements in the
input
tensor.Warning
This function produces deterministic (sub)gradients unlike
max(dim=0)
- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.6763, 0.7445, -2.2369]]) >>> torch.max(a) tensor(0.7445)
-
torch.
max
(input, dim, keepdim=False, *, out=None)¶
Returns a namedtuple
(values, indices)
wherevalues
is the maximum value of each row of theinput
tensor in the given dimensiondim
. Andindices
is the index location of each maximum value found (argmax).If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Note
If there are multiple maximal values in a reduced row then the indices of the first maximal value are returned.
- Parameters
- Keyword Arguments
out (tuple, optional) – the result tuple of two output tensors (max, max_indices)
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-1.2360, -0.2942, -0.1222, 0.8475], [ 1.1949, -1.1127, -2.2379, -0.6702], [ 1.5717, -0.9207, 0.1297, -1.8768], [-0.6172, 1.0036, -0.6060, -0.2432]]) >>> torch.max(a, 1) torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1]))
See
torch.maximum()
.
-
torch.
min
(input) → Tensor¶ Returns the minimum value of all elements in the
input
tensor.Warning
This function produces deterministic (sub)gradients unlike
min(dim=0)
- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750)
-
torch.
min
(input, dim, keepdim=False, *, out=None)¶
Returns a namedtuple
(values, indices)
wherevalues
is the minimum value of each row of theinput
tensor in the given dimensiondim
. Andindices
is the index location of each minimum value found (argmin).If
keepdim
isTrue
, the output tensors are of the same size asinput
except in the dimensiondim
where they are of size 1. Otherwise,dim
is squeezed (seetorch.squeeze()
), resulting in the output tensors having 1 fewer dimension thaninput
.Note
If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned.
- Parameters
- Keyword Arguments
out (tuple, optional) – the tuple of two output tensors (min, min_indices)
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0]))
See
torch.minimum()
.
-
torch.
ne
(input, other, *, out=None) → Tensor¶ Computes \(\text{input} \neq \text{other}\) element-wise.
The second argument can be a number or a tensor whose shape is broadcastable with the first argument.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
A boolean tensor that is True where
input
is not equal toother
and False elsewhere
Example:
>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [True, False]])
-
torch.
sort
(input, dim=- 1, descending=False, *, out=None)¶ Sorts the elements of the
input
tensor along a given dimension in ascending order by value.If
dim
is not given, the last dimension of the input is chosen.If
descending
isTrue
then the elements are sorted in descending order by value.A namedtuple of (values, indices) is returned, where the values are the sorted values and indices are the indices of the elements in the original input tensor.
- Parameters
- Keyword Arguments
out (tuple, optional) – the output tuple of (Tensor, LongTensor) that can be optionally given to be used as output buffers
Example:
>>> x = torch.randn(3, 4) >>> sorted, indices = torch.sort(x) >>> sorted tensor([[-0.2162, 0.0608, 0.6719, 2.3332], [-0.5793, 0.0061, 0.6058, 0.9497], [-0.5071, 0.3343, 0.9553, 1.0960]]) >>> indices tensor([[ 1, 0, 2, 3], [ 3, 1, 0, 2], [ 0, 3, 1, 2]]) >>> sorted, indices = torch.sort(x, 0) >>> sorted tensor([[-0.5071, -0.2162, 0.6719, -0.5793], [ 0.0608, 0.0061, 0.9497, 0.3343], [ 0.6058, 0.9553, 1.0960, 2.3332]]) >>> indices tensor([[ 2, 0, 0, 1], [ 0, 1, 1, 2], [ 1, 2, 2, 0]])
-
torch.
topk
(input, k, dim=None, largest=True, sorted=True, *, out=None)¶ Returns the
k
largest elements of the giveninput
tensor along a given dimension.If
dim
is not given, the last dimension of the input is chosen.If
largest
isFalse
then the k smallest elements are returned.A namedtuple of (values, indices) is returned, where the indices are the indices of the elements in the original input tensor.
The boolean option
sorted
ifTrue
, will make sure that the returned k elements are themselves sorted- Parameters
- Keyword Arguments
out (tuple, optional) – the output tuple of (Tensor, LongTensor) that can be optionally given to be used as output buffers
Example:
>>> x = torch.arange(1., 6.) >>> x tensor([ 1., 2., 3., 4., 5.]) >>> torch.topk(x, 3) torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))
Spectral Ops¶
-
torch.
fft
()¶
-
torch.
stft
(input: torch.Tensor, n_fft: int, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: Optional[torch.Tensor] = None, center: bool = True, pad_mode: str = 'reflect', normalized: bool = False, onesided: Optional[bool] = None, return_complex: Optional[bool] = None) → torch.Tensor[source]¶ Short-time Fourier transform (STFT).
Warning
From version 1.8.0,
return_complex
must always be given explicitly for real inputs and return_complex=False has been deprecated. Strongly prefer return_complex=True as in a future pytorch release, this function will only return complex tensors.Note that
torch.view_as_real()
can be used to recover a real tensor with an extra last dimension for real and imaginary components.The STFT computes the Fourier transform of short overlapping windows of the input. This giving frequency components of the signal as they change over time. The interface of this function is modeled after the librosa stft function.
Ignoring the optional batch dimension, this method computes the following expression:
\[X[m, \omega] = \sum_{k = 0}^{\text{win\_length-1}}% \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ % \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right), \]where \(m\) is the index of the sliding window, and \(\omega\) is the frequency that \(0 \leq \omega < \text{n\_fft}\). When
onesided
is the default valueTrue
,input
must be either a 1-D time sequence or a 2-D batch of time sequences.If
hop_length
isNone
(default), it is treated as equal tofloor(n_fft / 4)
.If
win_length
isNone
(default), it is treated as equal ton_fft
.window
can be a 1-D tensor of sizewin_length
, e.g., fromtorch.hann_window()
. Ifwindow
isNone
(default), it is treated as if having \(1\) everywhere in the window. If \(\text{win\_length} < \text{n\_fft}\),window
will be padded on both sides to lengthn_fft
before being applied.If
center
isTrue
(default),input
will be padded on both sides so that the \(t\)-th frame is centered at time \(t \times \text{hop\_length}\). Otherwise, the \(t\)-th frame begins at time \(t \times \text{hop\_length}\).pad_mode
determines the padding method used oninput
whencenter
isTrue
. Seetorch.nn.functional.pad()
for all available options. Default is"reflect"
.If
onesided
isTrue
(default for real input), only values for \(\omega\) in \(\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]\) are returned because the real-to-complex Fourier transform satisfies the conjugate symmetry, i.e., \(X[m, \omega] = X[m, \text{n\_fft} - \omega]^*\). Note if the input or window tensors are complex, thenonesided
output is not possible.If
normalized
isTrue
(default isFalse
), the function returns the normalized STFT results, i.e., multiplied by \((\text{frame\_length})^{-0.5}\).If
return_complex
isTrue
(default if input is complex), the return is ainput.dim() + 1
dimensional complex tensor. IfFalse
, the output is ainput.dim() + 2
dimensional real tensor where the last dimension represents the real and imaginary components.
Returns either a complex tensor of size \((* \times N \times T)\) if
return_complex
is true, or a real tensor of size \((* \times N \times T \times 2)\). Where \(*\) is the optional batch size ofinput
, \(N\) is the number of frequencies where STFT is applied and \(T\) is the total number of frames used.Warning
This function changed signature at version 0.4.1. Calling with the previous signature may cause error or return incorrect result.
- Parameters
input (Tensor) – the input tensor
n_fft (int) – size of Fourier transform
hop_length (int, optional) – the distance between neighboring sliding window frames. Default:
None
(treated as equal tofloor(n_fft / 4)
)win_length (int, optional) – the size of window frame and STFT filter. Default:
None
(treated as equal ton_fft
)window (Tensor, optional) – the optional window function. Default:
None
(treated as window of all \(1\) s)center (bool, optional) – whether to pad
input
on both sides so that the \(t\)-th frame is centered at time \(t \times \text{hop\_length}\). Default:True
pad_mode (string, optional) – controls the padding method used when
center
isTrue
. Default:"reflect"
normalized (bool, optional) – controls whether to return the normalized STFT results Default:
False
onesided (bool, optional) – controls whether to return half of results to avoid redundancy for real inputs. Default:
True
for realinput
andwindow
,False
otherwise.return_complex (bool, optional) – whether to return a complex tensor, or a real tensor with an extra last dimension for the real and imaginary components.
- Returns
A tensor containing the STFT result with shape described above
- Return type
-
torch.
bartlett_window
(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Bartlett window function.
\[w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ \end{cases}, \]where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\text{window\_length} + 1\). Also, we always havetorch.bartlett_window(L, periodic=True)
equal totorch.bartlett_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(=1\), the returned window contains a single value 1.- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). Only floating point types are supported.layout (
torch.layout
, optional) – the desired layout of returned window tensor. Onlytorch.strided
(dense layout) is supported.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Returns
A 1-D tensor of size \((\text{window\_length},)\) containing the window
- Return type
-
torch.
blackman_window
(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Blackman window function.
\[w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) \]where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\text{window\_length} + 1\). Also, we always havetorch.blackman_window(L, periodic=True)
equal totorch.blackman_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(=1\), the returned window contains a single value 1.- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). Only floating point types are supported.layout (
torch.layout
, optional) – the desired layout of returned window tensor. Onlytorch.strided
(dense layout) is supported.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Returns
A 1-D tensor of size \((\text{window\_length},)\) containing the window
- Return type
-
torch.
hamming_window
(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Hamming window function.
\[w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), \]where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\text{window\_length} + 1\). Also, we always havetorch.hamming_window(L, periodic=True)
equal totorch.hamming_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(=1\), the returned window contains a single value 1.Note
This is a generalized version of
torch.hann_window()
.- Parameters
window_length (int) – the size of returned window
periodic (bool, optional) – If True, returns a window to be used as periodic function. If False, return a symmetric window.
alpha (float, optional) – The coefficient \(\alpha\) in the equation above
beta (float, optional) – The coefficient \(\beta\) in the equation above
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). Only floating point types are supported.layout (
torch.layout
, optional) – the desired layout of returned window tensor. Onlytorch.strided
(dense layout) is supported.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Returns
A 1-D tensor of size \((\text{window\_length},)\) containing the window
- Return type
-
torch.
hann_window
(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Hann window function.
\[w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{N - 1} \right), \]where \(N\) is the full window size.
The input
window_length
is a positive integer controlling the returned window size.periodic
flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft()
. Therefore, ifperiodic
is true, the \(N\) in above formula is in fact \(\text{window\_length} + 1\). Also, we always havetorch.hann_window(L, periodic=True)
equal totorch.hann_window(L + 1, periodic=False)[:-1])
.Note
If
window_length
\(=1\), the returned window contains a single value 1.- Parameters
- Keyword Arguments
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). Only floating point types are supported.layout (
torch.layout
, optional) – the desired layout of returned window tensor. Onlytorch.strided
(dense layout) is supported.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Returns
A 1-D tensor of size \((\text{window\_length},)\) containing the window
- Return type
Other Operations¶
-
torch.
bincount
(input, weights=None, minlength=0) → Tensor¶ Count the frequency of each value in an array of non-negative ints.
The number of bins (size 1) is one larger than the largest value in
input
unlessinput
is empty, in which case the result is a tensor of size 0. Ifminlength
is specified, the number of bins is at leastminlength
and ifinput
is empty, then the result is tensor of sizeminlength
filled with zeros. Ifn
is the value at positioni
,out[n] += weights[i]
ifweights
is specified elseout[n] += 1
.Note
This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information.
- Parameters
- Returns
a tensor of shape
Size([max(input) + 1])
ifinput
is non-empty, elseSize(0)
- Return type
output (Tensor)
Example:
>>> input = torch.randint(0, 8, (5,), dtype=torch.int64) >>> weights = torch.linspace(0, 1, steps=5) >>> input, weights (tensor([4, 3, 6, 3, 4]), tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) >>> torch.bincount(input) tensor([0, 0, 0, 2, 2, 0, 1]) >>> input.bincount(weights) tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])
-
torch.
broadcast_tensors
(*tensors) → List of Tensors[source]¶ Broadcasts the given tensors according to Broadcasting semantics.
- Parameters
*tensors – any number of tensors of the same type
Warning
More than one element of a broadcasted tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first.
Example:
>>> x = torch.arange(3).view(1, 3) >>> y = torch.arange(2).view(2, 1) >>> a, b = torch.broadcast_tensors(x, y) >>> a.size() torch.Size([2, 3]) >>> a tensor([[0, 1, 2], [0, 1, 2]])
-
torch.
cross
(input, other, dim=None, *, out=None) → Tensor¶ Returns the cross product of vectors in dimension
dim
ofinput
andother
.input
andother
must have the same size, and the size of theirdim
dimension should be 3.If
dim
is not given, it defaults to the first dimension found with the size 3. Note that this might be unexpected.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.cross(a, b, dim=1) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> torch.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]])
-
torch.
diag
(input, diagonal=0, *, out=None) → Tensor¶ If
input
is a vector (1-D tensor), then returns a 2-D square tensor with the elements ofinput
as the diagonal.If
input
is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements ofinput
.
The argument
diagonal
controls which diagonal to consider:If
diagonal
= 0, it is the main diagonal.If
diagonal
> 0, it is above the main diagonal.If
diagonal
< 0, it is below the main diagonal.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
See also
torch.diagonal()
always returns the diagonal of its input.torch.diagflat()
always constructs a tensor with diagonal elements specified by the input.Examples:
Get the square matrix where the input vector is the diagonal:
>>> a = torch.randn(3) >>> a tensor([ 0.5950,-0.0872, 2.3298]) >>> torch.diag(a) tensor([[ 0.5950, 0.0000, 0.0000], [ 0.0000,-0.0872, 0.0000], [ 0.0000, 0.0000, 2.3298]]) >>> torch.diag(a, 1) tensor([[ 0.0000, 0.5950, 0.0000, 0.0000], [ 0.0000, 0.0000,-0.0872, 0.0000], [ 0.0000, 0.0000, 0.0000, 2.3298], [ 0.0000, 0.0000, 0.0000, 0.0000]])
Get the k-th diagonal of a given matrix:
>>> a = torch.randn(3, 3) >>> a tensor([[-0.4264, 0.0255,-0.1064], [ 0.8795,-0.2429, 0.1374], [ 0.1029,-0.6482,-1.6300]]) >>> torch.diag(a, 0) tensor([-0.4264,-0.2429,-1.6300]) >>> torch.diag(a, 1) tensor([ 0.0255, 0.1374])
-
torch.
diag_embed
(input, offset=0, dim1=- 2, dim2=- 1) → Tensor¶ Creates a tensor whose diagonals of certain 2D planes (specified by
dim1
anddim2
) are filled byinput
. To facilitate creating batched diagonal matrices, the 2D planes formed by the last two dimensions of the returned tensor are chosen by default.The argument
offset
controls which diagonal to consider:If
offset
= 0, it is the main diagonal.If
offset
> 0, it is above the main diagonal.If
offset
< 0, it is below the main diagonal.
The size of the new matrix will be calculated to make the specified diagonal of the size of the last input dimension. Note that for
offset
other than \(0\), the order ofdim1
anddim2
matters. Exchanging them is equivalent to changing the sign ofoffset
.Applying
torch.diagonal()
to the output of this function with the same arguments yields a matrix identical to input. However,torch.diagonal()
has different default dimensions, so those need to be explicitly specified.- Parameters
input (Tensor) – the input tensor. Must be at least 1-dimensional.
offset (int, optional) – which diagonal to consider. Default: 0 (main diagonal).
dim1 (int, optional) – first dimension with respect to which to take diagonal. Default: -2.
dim2 (int, optional) – second dimension with respect to which to take diagonal. Default: -1.
Example:
>>> a = torch.randn(2, 3) >>> torch.diag_embed(a) tensor([[[ 1.5410, 0.0000, 0.0000], [ 0.0000, -0.2934, 0.0000], [ 0.0000, 0.0000, -2.1788]], [[ 0.5684, 0.0000, 0.0000], [ 0.0000, -1.0845, 0.0000], [ 0.0000, 0.0000, -1.3986]]]) >>> torch.diag_embed(a, offset=1, dim1=0, dim2=2) tensor([[[ 0.0000, 1.5410, 0.0000, 0.0000], [ 0.0000, 0.5684, 0.0000, 0.0000]], [[ 0.0000, 0.0000, -0.2934, 0.0000], [ 0.0000, 0.0000, -1.0845, 0.0000]], [[ 0.0000, 0.0000, 0.0000, -2.1788], [ 0.0000, 0.0000, 0.0000, -1.3986]], [[ 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000]]])
-
torch.
diagflat
(input, offset=0) → Tensor¶ If
input
is a vector (1-D tensor), then returns a 2-D square tensor with the elements ofinput
as the diagonal.If
input
is a tensor with more than one dimension, then returns a 2-D tensor with diagonal elements equal to a flattenedinput
.
The argument
offset
controls which diagonal to consider:If
offset
= 0, it is the main diagonal.If
offset
> 0, it is above the main diagonal.If
offset
< 0, it is below the main diagonal.
- Parameters
Examples:
>>> a = torch.randn(3) >>> a tensor([-0.2956, -0.9068, 0.1695]) >>> torch.diagflat(a) tensor([[-0.2956, 0.0000, 0.0000], [ 0.0000, -0.9068, 0.0000], [ 0.0000, 0.0000, 0.1695]]) >>> torch.diagflat(a, 1) tensor([[ 0.0000, -0.2956, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.9068, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.1695], [ 0.0000, 0.0000, 0.0000, 0.0000]]) >>> a = torch.randn(2, 2) >>> a tensor([[ 0.2094, -0.3018], [-0.1516, 1.9342]]) >>> torch.diagflat(a) tensor([[ 0.2094, 0.0000, 0.0000, 0.0000], [ 0.0000, -0.3018, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.1516, 0.0000], [ 0.0000, 0.0000, 0.0000, 1.9342]])
-
torch.
diagonal
(input, offset=0, dim1=0, dim2=1) → Tensor¶ Returns a partial view of
input
with the its diagonal elements with respect todim1
anddim2
appended as a dimension at the end of the shape.The argument
offset
controls which diagonal to consider:If
offset
= 0, it is the main diagonal.If
offset
> 0, it is above the main diagonal.If
offset
< 0, it is below the main diagonal.
Applying
torch.diag_embed()
to the output of this function with the same arguments yields a diagonal matrix with the diagonal entries of the input. However,torch.diag_embed()
has different default dimensions, so those need to be explicitly specified.- Parameters
input (Tensor) – the input tensor. Must be at least 2-dimensional.
offset (int, optional) – which diagonal to consider. Default: 0 (main diagonal).
dim1 (int, optional) – first dimension with respect to which to take diagonal. Default: 0.
dim2 (int, optional) – second dimension with respect to which to take diagonal. Default: 1.
Note
To take a batch diagonal, pass in dim1=-2, dim2=-1.
Examples:
>>> a = torch.randn(3, 3) >>> a tensor([[-1.0854, 1.1431, -0.1752], [ 0.8536, -0.0905, 0.0360], [ 0.6927, -0.3735, -0.4945]]) >>> torch.diagonal(a, 0) tensor([-1.0854, -0.0905, -0.4945]) >>> torch.diagonal(a, 1) tensor([ 1.1431, 0.0360]) >>> x = torch.randn(2, 5, 4, 2) >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], [-1.1065, 1.0401, -0.2235, -0.7938]], [[-1.7325, -0.3081, 0.6166, 0.2335], [ 1.0500, 0.7336, -0.3836, -1.1015]]])
-
torch.
einsum
(equation, *operands) → Tensor[source]¶ Sums the product of the elements of the input
operands
along dimensions specified using a notation based on the Einstein summation convention.Einsum allows computing many common multi-dimensional linear algebraic array operations by representing them in a short-hand format based on the Einstein summation convention, given by
equation
. The details of this format are described below, but the general idea is to label every dimension of the inputoperands
with some subscript and define which subscripts are part of the output. The output is then computed by summing the product of the elements of theoperands
along the dimensions whose subscripts are not part of the output. For example, matrix multiplication can be computed using einsum as torch.einsum(“ij,jk->ik”, A, B). Here, j is the summation subscript and i and k the output subscripts (see section below for more details on why).Equation:
The
equation
string specifies the subscripts (lower case letters [‘a’, ‘z’]) for each dimension of the inputoperands
in the same order as the dimensions, separating subcripts for each operand by a comma (‘,’), e.g. ‘ij,jk’ specify subscripts for two 2D operands. The dimensions labeled with the same subscript must be broadcastable, that is, their size must either match or be 1. The exception is if a subscript is repeated for the same input operand, in which case the dimensions labeled with this subscript for this operand must match in size and the operand will be replaced by its diagonal along these dimensions. The subscripts that appear exactly once in theequation
will be part of the output, sorted in increasing alphabetical order. The output is computed by multiplying the inputoperands
element-wise, with their dimensions aligned based on the subscripts, and then summing out the dimensions whose subscripts are not part of the output.Optionally, the output subscripts can be explicitly defined by adding an arrow (‘->’) at the end of the equation followed by the subscripts for the output. For instance, the following equation computes the transpose of a matrix multiplication: ‘ij,jk->ki’. The output subscripts must appear at least once for some input operand and at most once for the output.
Ellipsis (’…’) can be used in place of subscripts to broadcast the dimensions covered by the ellipsis. Each input operand may contain at most one ellipsis which will cover the dimensions not covered by subscripts, e.g. for an input operand with 5 dimensions, the ellipsis in the equation ‘ab…c’ cover the third and fourth dimensions. The ellipsis does not need to cover the same number of dimensions across the
operands
but the ‘shape’ of the ellipsis (the size of the dimensions covered by them) must broadcast together. If the output is not explicitly defined with the arrow (‘->’) notation, the ellipsis will come first in the output (left-most dimensions), before the subscript labels that appear exactly once for the input operands. e.g. the following equation implements batch matrix multiplication ‘…ij,…jk’.A few final notes: the equation may contain whitespaces between the different elements (subscripts, ellipsis, arrow and comma) but something like ‘…’ is not valid. An empty string ‘’ is valid for scalar operands.
Note
torch.einsum
handles ellipsis (’…’) differently from NumPy in that it allows dimensions covered by the ellipsis to be summed over, that is, ellipsis are not required to be part of the output.Note
This function does not optimize the given expression, so a different formula for the same computation may run faster or consume less memory. Projects like opt_einsum (https://optimized-einsum.readthedocs.io/en/stable/) can optimize the formula for you.
- Parameters
equation (string) – The subscripts for the Einstein summation.
operands (Tensor) – The operands to compute the Einstein sum of.
Examples:
# trace >>> torch.einsum('ii', torch.randn(4, 4)) tensor(-1.2104) # diagonal >>> torch.einsum('ii->i', torch.randn(4, 4)) tensor([-0.1034, 0.7952, -0.2433, 0.4545]) # outer product >>> x = torch.randn(5) >>> y = torch.randn(4) >>> torch.einsum('i,j->ij', x, y) tensor([[ 0.1156, -0.2897, -0.3918, 0.4963], [-0.3744, 0.9381, 1.2685, -1.6070], [ 0.7208, -1.8058, -2.4419, 3.0936], [ 0.1713, -0.4291, -0.5802, 0.7350], [ 0.5704, -1.4290, -1.9323, 2.4480]]) # batch matrix multiplication >>> As = torch.randn(3,2,5) >>> Bs = torch.randn(3,5,4) >>> torch.einsum('bij,bjk->bik', As, Bs) tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], [-1.6706, -0.8097, -0.8025, -2.1183]], [[ 4.2239, 0.3107, -0.5756, -0.2354], [-1.4558, -0.3460, 1.5087, -0.8530]], [[ 2.8153, 1.8787, -4.3839, -1.2112], [ 0.3728, -2.1131, 0.0921, 0.8305]]]) # batch permute >>> A = torch.randn(2, 3, 4, 5) >>> torch.einsum('...ij->...ji', A).shape torch.Size([2, 3, 5, 4]) # equivalent to torch.nn.functional.bilinear >>> A = torch.randn(3,5,4) >>> l = torch.randn(2,5) >>> r = torch.randn(2,4) >>> torch.einsum('bn,anm,bm->ba', l, A, r) tensor([[-0.3430, -5.2405, 0.4494], [ 0.3311, 5.5201, -3.0356]])
-
torch.
flatten
(input, start_dim=0, end_dim=- 1) → Tensor¶ Flattens
input
by reshaping it into a one-dimensional tensor. Ifstart_dim
orend_dim
are passed, only dimensions starting withstart_dim
and ending withend_dim
are flattened. The order of elements ininput
is unchanged.Unlike NumPy’s flatten, which always copies input’s data, this function may return the original object, a view, or copy. If no dimensions are flattened, then the original object
input
is returned. Otherwise, if input can be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the flattened shape is input’s data copied. Seetorch.Tensor.view()
for details on when a view will be returned.Note
Flattening a zero-dimensional tensor will return a one-dimensional view.
- Parameters
Example:
>>> t = torch.tensor([[[1, 2], ... [3, 4]], ... [[5, 6], ... [7, 8]]]) >>> torch.flatten(t) tensor([1, 2, 3, 4, 5, 6, 7, 8]) >>> torch.flatten(t, start_dim=1) tensor([[1, 2, 3, 4], [5, 6, 7, 8]])
-
torch.
flip
(input, dims) → Tensor¶ Reverse the order of a n-D tensor along given axis in dims.
Note
torch.flip makes a copy of
input
’s data. This is different from NumPy’s np.flip, which returns a view in constant time. Since copying a tensor’s data is more work than viewing that data, torch.flip is expected to be slower than np.flip.Example:
>>> x = torch.arange(8).view(2, 2, 2) >>> x tensor([[[ 0, 1], [ 2, 3]], [[ 4, 5], [ 6, 7]]]) >>> torch.flip(x, [0, 1]) tensor([[[ 6, 7], [ 4, 5]], [[ 2, 3], [ 0, 1]]])
-
torch.
histc
(input, bins=100, min=0, max=0, *, out=None) → Tensor¶ Computes the histogram of a tensor.
The elements are sorted into equal width bins between
min
andmax
. Ifmin
andmax
are both zero, the minimum and maximum values of the data are used.Elements lower than min and higher than max are ignored.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
- Returns
Histogram represented as a tensor
- Return type
Example:
>>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3) tensor([ 0., 2., 1., 0.])
-
torch.
meshgrid
(*tensors)[source]¶ Take \(N\) tensors, each of which can be either scalar or 1-dimensional vector, and create \(N\) N-dimensional grids, where the \(i\) th grid is defined by expanding the \(i\) th input over dimensions defined by other inputs.
- Parameters
tensors (list of Tensor) – list of scalars or 1 dimensional tensors. Scalars will be treated as tensors of size \((1,)\) automatically
- Returns
If the input has \(k\) tensors of size \((N_1,), (N_2,), \ldots , (N_k,)\), then the output would also have \(k\) tensors, where all tensors are of size \((N_1, N_2, \ldots , N_k)\).
- Return type
seq (sequence of Tensors)
Example:
>>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([4, 5, 6]) >>> grid_x, grid_y = torch.meshgrid(x, y) >>> grid_x tensor([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> grid_y tensor([[4, 5, 6], [4, 5, 6], [4, 5, 6]])
-
torch.
renorm
(input, p, dim, maxnorm, *, out=None) → Tensor¶ Returns a tensor where each sub-tensor of
input
along dimensiondim
is normalized such that the p-norm of the sub-tensor is lower than the valuemaxnorm
Note
If the norm of a row is lower than maxnorm, the row is unchanged
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> x = torch.ones(3, 3) >>> x[1].fill_(2) tensor([ 2., 2., 2.]) >>> x[2].fill_(3) tensor([ 3., 3., 3.]) >>> x tensor([[ 1., 1., 1.], [ 2., 2., 2.], [ 3., 3., 3.]]) >>> torch.renorm(x, 1, 0, 5) tensor([[ 1.0000, 1.0000, 1.0000], [ 1.6667, 1.6667, 1.6667], [ 1.6667, 1.6667, 1.6667]])
-
torch.
tensordot
(a, b, dims=2, out=None)[source]¶ Returns a contraction of a and b over multiple dimensions.
tensordot
implements a generalized matrix product.- Parameters
When called with a non-negative integer argument
dims
= \(d\), and the number of dimensions ofa
andb
is \(m\) and \(n\), respectively,tensordot()
computes\[r_{i_0,...,i_{m-d}, i_d,...,i_n} = \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}. \]When called with
dims
of the list form, the given dimensions will be contracted in place of the last \(d\) ofa
and the first \(d\) of \(b\). The sizes in these dimensions must match, buttensordot()
will deal with broadcasted dimensions.Examples:
>>> a = torch.arange(60.).reshape(3, 4, 5) >>> b = torch.arange(24.).reshape(4, 3, 2) >>> torch.tensordot(a, b, dims=([1, 0], [0, 1])) tensor([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> a = torch.randn(3, 4, 5, device='cuda') >>> b = torch.randn(4, 5, 6, device='cuda') >>> c = torch.tensordot(a, b, dims=2).cpu() tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741], [ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744], [ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]]) >>> a = torch.randn(3, 5, 4, 6) >>> b = torch.randn(6, 4, 5, 3) >>> torch.tensordot(a, b, dims=([2, 1, 3], [1, 2, 0])) tensor([[ 7.7193, -2.4867, -10.3204], [ 1.5513, -14.4737, -6.5113], [ -0.2850, 4.2573, -3.5997]])
-
torch.
trace
(input) → Tensor¶ Returns the sum of the elements of the diagonal of the input 2-D matrix.
Example:
>>> x = torch.arange(1., 10.).view(3, 3) >>> x tensor([[ 1., 2., 3.], [ 4., 5., 6.], [ 7., 8., 9.]]) >>> torch.trace(x) tensor(15.)
-
torch.
tril
(input, diagonal=0, *, out=None) → Tensor¶ Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices
input
, the other elements of the result tensorout
are set to 0.The lower triangular part of the matrix is defined as the elements on and below the diagonal.
The argument
diagonal
controls which diagonal to consider. Ifdiagonal
= 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices \(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where \(d_{1}, d_{2}\) are the dimensions of the matrix.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(3, 3) >>> a tensor([[-1.0813, -0.8619, 0.7105], [ 0.0935, 0.1380, 2.2112], [-0.3409, -0.9828, 0.0289]]) >>> torch.tril(a) tensor([[-1.0813, 0.0000, 0.0000], [ 0.0935, 0.1380, 0.0000], [-0.3409, -0.9828, 0.0289]]) >>> b = torch.randn(4, 6) >>> b tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461], [ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145], [ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864], [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]]) >>> torch.tril(b, diagonal=1) tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000], [ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000], [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]]) >>> torch.tril(b, diagonal=-1) tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000], [-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]])
-
torch.
triu
(input, diagonal=0, *, out=None) → Tensor¶ Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
input
, the other elements of the result tensorout
are set to 0.The upper triangular part of the matrix is defined as the elements on and above the diagonal.
The argument
diagonal
controls which diagonal to consider. Ifdiagonal
= 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices \(\lbrace (i, i) \rbrace\) for \(i \in [0, \min\{d_{1}, d_{2}\} - 1]\) where \(d_{1}, d_{2}\) are the dimensions of the matrix.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(3, 3) >>> a tensor([[ 0.2309, 0.5207, 2.0049], [ 0.2072, -1.0680, 0.6602], [ 0.3480, -0.5211, -0.4573]]) >>> torch.triu(a) tensor([[ 0.2309, 0.5207, 2.0049], [ 0.0000, -1.0680, 0.6602], [ 0.0000, 0.0000, -0.4573]]) >>> torch.triu(a, diagonal=1) tensor([[ 0.0000, 0.5207, 2.0049], [ 0.0000, 0.0000, 0.6602], [ 0.0000, 0.0000, 0.0000]]) >>> torch.triu(a, diagonal=-1) tensor([[ 0.2309, 0.5207, 2.0049], [ 0.2072, -1.0680, 0.6602], [ 0.0000, -0.5211, -0.4573]]) >>> b = torch.randn(4, 6) >>> b tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], [-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]]) >>> torch.triu(b, diagonal=1) tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]]) >>> torch.triu(b, diagonal=-1) tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], [ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], [ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]])
BLAS and LAPACK Operations¶
-
torch.
addbmm
(input, batch1, batch2, *, beta=1, alpha=1, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices stored in
batch1
andbatch2
, with a reduced add step (all matrix multiplications get accumulated along the first dimension).input
is added to the final result.batch1
andbatch2
must be 3-D tensors each containing the same number of matrices.If
batch1
is a \((b \times n \times m)\) tensor,batch2
is a \((b \times m \times p)\) tensor,input
must be broadcastable with a \((n \times p)\) tensor andout
will be a \((n \times p)\) tensor.\[out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) \]If
beta
is 0, theninput
will be ignored, and nan and inf in it will not be propagated.For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers.This operator supports TensorFloat32.
- Parameters
- Keyword Arguments
Example:
>>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
-
torch.
addmm
(input, mat1, mat2, *, beta=1, alpha=1, out=None) → Tensor¶ Performs a matrix multiplication of the matrices
mat1
andmat2
. The matrixinput
is added to the final result.If
mat1
is a \((n \times m)\) tensor,mat2
is a \((m \times p)\) tensor, theninput
must be broadcastable with a \((n \times p)\) tensor andout
will be a \((n \times p)\) tensor.alpha
andbeta
are scaling factors on matrix-vector product betweenmat1
andmat2
and the added matrixinput
respectively.\[\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) \]If
beta
is 0, theninput
will be ignored, and nan and inf in it will not be propagated.For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers.This operator supports TensorFloat32.
- Parameters
- Keyword Arguments
beta (Number, optional) – multiplier for
input
(\(\beta\))alpha (Number, optional) – multiplier for \(mat1 @ mat2\) (\(\alpha\))
out (Tensor, optional) – the output tensor.
Example:
>>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]])
-
torch.
addmv
(input, mat, vec, *, beta=1, alpha=1, out=None) → Tensor¶ Performs a matrix-vector product of the matrix
mat
and the vectorvec
. The vectorinput
is added to the final result.If
mat
is a \((n \times m)\) tensor,vec
is a 1-D tensor of size m, theninput
must be broadcastable with a 1-D tensor of size n andout
will be 1-D tensor of size n.alpha
andbeta
are scaling factors on matrix-vector product betweenmat
andvec
and the added tensorinput
respectively.\[\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) \]If
beta
is 0, theninput
will be ignored, and nan and inf in it will not be propagated.For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers- Parameters
- Keyword Arguments
beta (Number, optional) – multiplier for
input
(\(\beta\))alpha (Number, optional) – multiplier for \(mat @ vec\) (\(\alpha\))
out (Tensor, optional) – the output tensor.
Example:
>>> M = torch.randn(2) >>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.addmv(M, mat, vec) tensor([-0.3768, -5.5565])
-
torch.
addr
(input, vec1, vec2, *, beta=1, alpha=1, out=None) → Tensor¶ Performs the outer-product of vectors
vec1
andvec2
and adds it to the matrixinput
.Optional values
beta
andalpha
are scaling factors on the outer product betweenvec1
andvec2
and the added matrixinput
respectively.\[\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) \]If
beta
is 0, theninput
will be ignored, and nan and inf in it will not be propagated.If
vec1
is a vector of size n andvec2
is a vector of size m, theninput
must be broadcastable with a matrix of size \((n \times m)\) andout
will be a matrix of size \((n \times m)\).- Parameters
- Keyword Arguments
beta (Number, optional) – multiplier for
input
(\(\beta\))alpha (Number, optional) – multiplier for \(\text{vec1} \otimes \text{vec2}\) (\(\alpha\))
out (Tensor, optional) – the output tensor.
Example:
>>> vec1 = torch.arange(1., 4.) >>> vec2 = torch.arange(1., 3.) >>> M = torch.zeros(3, 2) >>> torch.addr(M, vec1, vec2) tensor([[ 1., 2.], [ 2., 4.], [ 3., 6.]])
-
torch.
baddbmm
(input, batch1, batch2, *, beta=1, alpha=1, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices in
batch1
andbatch2
.input
is added to the final result.batch1
andbatch2
must be 3-D tensors each containing the same number of matrices.If
batch1
is a \((b \times n \times m)\) tensor,batch2
is a \((b \times m \times p)\) tensor, theninput
must be broadcastable with a \((b \times n \times p)\) tensor andout
will be a \((b \times n \times p)\) tensor. Bothalpha
andbeta
mean the same as the scaling factors used intorch.addbmm()
.\[\text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) \]If
beta
is 0, theninput
will be ignored, and nan and inf in it will not be propagated.For inputs of type FloatTensor or DoubleTensor, arguments
beta
andalpha
must be real numbers, otherwise they should be integers.This operator supports TensorFloat32.
- Parameters
- Keyword Arguments
beta (Number, optional) – multiplier for
input
(\(\beta\))alpha (Number, optional) – multiplier for \(\text{batch1} \mathbin{@} \text{batch2}\) (\(\alpha\))
out (Tensor, optional) – the output tensor.
Example:
>>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5])
-
torch.
bmm
(input, mat2, *, deterministic=False, out=None) → Tensor¶ Performs a batch matrix-matrix product of matrices stored in
input
andmat2
.input
andmat2
must be 3-D tensors each containing the same number of matrices.If
input
is a \((b \times n \times m)\) tensor,mat2
is a \((b \times m \times p)\) tensor,out
will be a \((b \times n \times p)\) tensor.\[\text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i \]This operator supports TensorFloat32.
Note
This function does not broadcast. For broadcasting matrix products, see
torch.matmul()
.- Parameters
- Keyword Arguments
Example:
>>> input = torch.randn(10, 3, 4) >>> mat2 = torch.randn(10, 4, 5) >>> res = torch.bmm(input, mat2) >>> res.size() torch.Size([10, 3, 5])
-
torch.
chain_matmul
(*matrices)[source]¶ Returns the matrix product of the \(N\) 2-D tensors. This product is efficiently computed using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms of arithmetic operations ([CLRS]). Note that since this is a function to compute the product, \(N\) needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned. If \(N\) is 1, then this is a no-op - the original matrix is returned as is.
- Parameters
matrices (Tensors...) – a sequence of 2 or more 2-D tensors whose product is to be determined.
- Returns
if the \(i^{th}\) tensor was of dimensions \(p_{i} \times p_{i + 1}\), then the product would be of dimensions \(p_{1} \times p_{N + 1}\).
- Return type
Example:
>>> a = torch.randn(3, 4) >>> b = torch.randn(4, 5) >>> c = torch.randn(5, 6) >>> d = torch.randn(6, 7) >>> torch.chain_matmul(a, b, c, d) tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614], [ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163], [ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]])
-
torch.
cholesky
(input, upper=False, *, out=None) → Tensor¶ Computes the Cholesky decomposition of a symmetric positive-definite matrix \(A\) or for batches of symmetric positive-definite matrices.
If
upper
isTrue
, the returned matrixU
is upper-triangular, and the decomposition has the form:\[A = U^TU\]If
upper
isFalse
, the returned matrixL
is lower-triangular, and the decomposition has the form:\[A = LL^T\]If
upper
isTrue
, and \(A\) is a batch of symmetric positive-definite matrices, then the returned tensor will be composed of upper-triangular Cholesky factors of each of the individual matrices. Similarly, whenupper
isFalse
, the returned tensor will be composed of lower-triangular Cholesky factors of each of the individual matrices.Note
torch.linalg.cholesky()
should be used overtorch.cholesky
when possible. Note however thattorch.linalg.cholesky()
does not yet support theupper
parameter and instead always returns the lower triangular matrix.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output matrix
Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive-definite >>> l = torch.cholesky(a) >>> a tensor([[ 2.4112, -0.7486, 1.4551], [-0.7486, 1.3544, 0.1294], [ 1.4551, 0.1294, 1.6724]]) >>> l tensor([[ 1.5528, 0.0000, 0.0000], [-0.4821, 1.0592, 0.0000], [ 0.9371, 0.5487, 0.7023]]) >>> torch.mm(l, l.t()) tensor([[ 2.4112, -0.7486, 1.4551], [-0.7486, 1.3544, 0.1294], [ 1.4551, 0.1294, 1.6724]]) >>> a = torch.randn(3, 2, 2) >>> a = torch.matmul(a, a.transpose(-1, -2)) + 1e-03 # make symmetric positive-definite >>> l = torch.cholesky(a) >>> z = torch.matmul(l, l.transpose(-1, -2)) >>> torch.max(torch.abs(z - a)) # Max non-zero tensor(2.3842e-07)
-
torch.
dot
(input, other, *, out=None) → Tensor¶ Computes the dot product of two 1D tensors.
Note
Unlike NumPy’s dot, torch.dot intentionally only supports computing the dot product of two 1D tensors with the same number of elements.
- Parameters
- Keyword Arguments
{out} –
Example:
>>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1])) tensor(7)
-
torch.
eig
(input, eigenvectors=False, *, out=None)¶ Computes the eigenvalues and eigenvectors of a real square matrix.
Note
Since eigenvalues and eigenvectors might be complex, backward pass is supported only if eigenvalues and eigenvectors are all real valued.
When
input
is on CUDA,torch.eig()
causes host-device synchronization.- Parameters
- Keyword Arguments
out (tuple, optional) – the output tensors
- Returns
A namedtuple (eigenvalues, eigenvectors) containing
eigenvalues (Tensor): Shape \((n \times 2)\). Each row is an eigenvalue of
input
, where the first element is the real part and the second element is the imaginary part. The eigenvalues are not necessarily ordered.eigenvectors (Tensor): If
eigenvectors=False
, it’s an empty tensor. Otherwise, this tensor of shape \((n \times n)\) can be used to compute normalized (unit length) eigenvectors of corresponding eigenvalues as follows. If the corresponding eigenvalues[j] is a real number, column eigenvectors[:, j] is the eigenvector corresponding to eigenvalues[j]. If the corresponding eigenvalues[j] and eigenvalues[j + 1] form a complex conjugate pair, then the true eigenvectors can be computed as \(\text{true eigenvector}[j] = eigenvectors[:, j] + i \times eigenvectors[:, j + 1]\), \(\text{true eigenvector}[j + 1] = eigenvectors[:, j] - i \times eigenvectors[:, j + 1]\).
- Return type
Example:
Trivial example with a diagonal matrix. By default, only eigenvalues are computed: >>> a = torch.diag(torch.tensor([1, 2, 3], dtype=torch.double)) >>> e, v = torch.eig(a) >>> e tensor([[1., 0.], [2., 0.], [3., 0.]], dtype=torch.float64) >>> v tensor([], dtype=torch.float64) Compute also the eigenvectors: >>> e, v = torch.eig(a, eigenvectors=True) >>> e tensor([[1., 0.], [2., 0.], [3., 0.]], dtype=torch.float64) >>> v tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], dtype=torch.float64)
-
torch.
geqrf
(input, *, out=None)¶ This is a low-level function for calling LAPACK directly. This function returns a namedtuple (a, tau) as defined in LAPACK documentation for geqrf .
You’ll generally want to use
torch.qr()
instead.Computes a QR decomposition of
input
, but without constructing \(Q\) and \(R\) as explicit separate matrices.Rather, this directly calls the underlying LAPACK function ?geqrf which produces a sequence of ‘elementary reflectors’.
See LAPACK documentation for geqrf for further details.
-
torch.
ger
(input, vec2, *, out=None) → Tensor¶ Alias of
torch.outer()
.Warning
This function is deprecated and will be removed in a future PyTorch release. Use
torch.outer()
instead.
-
torch.
inverse
(input, *, out=None) → Tensor¶ Takes the inverse of the square matrix
input
.input
can be batches of 2D square tensors, in which case this function would return a tensor composed of individual inverses.Supports real and complex input.
Note
torch.inverse()
is deprecated. Please usetorch.linalg.inv()
instead.Note
Irrespective of the original strides, the returned tensors will be transposed, i.e. with strides like input.contiguous().transpose(-2, -1).stride()
- Parameters
input (Tensor) – the input tensor of size \((*, n, n)\) where * is zero or more batch dimensions
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Examples:
>>> x = torch.rand(4, 4) >>> y = torch.inverse(x) >>> z = torch.mm(x, y) >>> z tensor([[ 1.0000, -0.0000, -0.0000, 0.0000], [ 0.0000, 1.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 1.0000, 0.0000], [ 0.0000, -0.0000, -0.0000, 1.0000]]) >>> torch.max(torch.abs(z - torch.eye(4))) # Max non-zero tensor(1.1921e-07) >>> # Batched inverse example >>> x = torch.randn(2, 3, 4, 4) >>> y = torch.inverse(x) >>> z = torch.matmul(x, y) >>> torch.max(torch.abs(z - torch.eye(4).expand_as(x))) # Max non-zero tensor(1.9073e-06) >>> x = torch.rand(4, 4, dtype=torch.cdouble) >>> y = torch.inverse(x) >>> z = torch.mm(x, y) >>> z tensor([[ 1.0000e+00+0.0000e+00j, -1.3878e-16+3.4694e-16j, 5.5511e-17-1.1102e-16j, 0.0000e+00-1.6653e-16j], [ 5.5511e-16-1.6653e-16j, 1.0000e+00+6.9389e-17j, 2.2204e-16-1.1102e-16j, -2.2204e-16+1.1102e-16j], [ 3.8858e-16-1.2490e-16j, 2.7756e-17+3.4694e-17j, 1.0000e+00+0.0000e+00j, -4.4409e-16+5.5511e-17j], [ 4.4409e-16+5.5511e-16j, -3.8858e-16+1.8041e-16j, 2.2204e-16+0.0000e+00j, 1.0000e+00-3.4694e-16j]], dtype=torch.complex128) >>> torch.max(torch.abs(z - torch.eye(4, dtype=torch.cdouble))) # Max non-zero tensor(7.5107e-16, dtype=torch.float64)
-
torch.
det
(input) → Tensor¶ Calculates determinant of a square matrix or batches of square matrices.
Note
torch.det()
is deprecated. Please usetorch.linalg.det()
instead.Note
Backward through \(det\) internally uses SVD results when
input
is not invertible. In this case, double backward through \(det\) will be unstable wheninput
doesn’t have distinct singular values. See \(~torch.svd\) for details.- Parameters
input (Tensor) – the input tensor of size
(*, n, n)
where*
is zero or more batch dimensions.
Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) tensor(3.7641) >>> A = torch.randn(3, 2, 2) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386])
-
torch.
logdet
(input) → Tensor¶ Calculates log determinant of a square matrix or batches of square matrices.
Note
Result is
-inf
ifinput
has zero log determinant, and isnan
ifinput
has negative determinant.Note
Backward through
logdet()
internally uses SVD results wheninput
is not invertible. In this case, double backward throughlogdet()
will be unstable in wheninput
doesn’t have distinct singular values. Seesvd()
for details.- Parameters
input (Tensor) – the input tensor of size
(*, n, n)
where*
is zero or more batch dimensions.
Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) tensor(0.2611) >>> torch.logdet(A) tensor(-1.3430) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386]) >>> A.det().log() tensor([ 0.1815, -0.8917, -0.3031])
-
torch.
slogdet
(input)¶ Calculates the sign and log absolute value of the determinant(s) of a square matrix or batches of square matrices.
Note
torch.slogdet()
is deprecated. Please usetorch.linalg.slogdet()
instead.Note
If
input
has zero determinant, this returns(0, -inf)
.Note
Backward through
slogdet()
internally uses SVD results wheninput
is not invertible. In this case, double backward throughslogdet()
will be unstable in wheninput
doesn’t have distinct singular values. Seesvd()
for details.- Parameters
input (Tensor) – the input tensor of size
(*, n, n)
where*
is zero or more batch dimensions.- Returns
A namedtuple (sign, logabsdet) containing the sign of the determinant, and the log value of the absolute determinant.
Example:
>>> A = torch.randn(3, 3) >>> A tensor([[ 0.0032, -0.2239, -1.1219], [-0.6690, 0.1161, 0.4053], [-1.6218, -0.9273, -0.0082]]) >>> torch.det(A) tensor(-0.7576) >>> torch.logdet(A) tensor(nan) >>> torch.slogdet(A) torch.return_types.slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))
-
torch.
matmul
(input, other, *, out=None) → Tensor¶ Matrix product of two tensors.
The behavior depends on the dimensionality of the tensors as follows:
If both tensors are 1-dimensional, the dot product (scalar) is returned.
If both arguments are 2-dimensional, the matrix-matrix product is returned.
If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned.
If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be broadcastable). For example, if
input
is a \((j \times 1 \times n \times n)\) tensor andother
is a \((k \times n \times n)\) tensor,out
will be a \((j \times k \times n \times n)\) tensor.Note that the broadcasting logic only looks at the batch dimensions when determining if the inputs are broadcastable, and not the matrix dimensions. For example, if
input
is a \((j \times 1 \times n \times m)\) tensor andother
is a \((k \times m \times p)\) tensor, these inputs are valid for broadcasting even though the final two dimensions (i.e. the matrix dimensions) are different.out
will be a \((j \times k \times n \times p)\) tensor.
This operator supports TensorFloat32.
Note
The 1-dimensional dot product version of this function does not support an
out
parameter.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> # vector x vector >>> tensor1 = torch.randn(3) >>> tensor2 = torch.randn(3) >>> torch.matmul(tensor1, tensor2).size() torch.Size([]) >>> # matrix x vector >>> tensor1 = torch.randn(3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([3]) >>> # batched matrix x broadcasted vector >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3]) >>> # batched matrix x batched matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(10, 4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5]) >>> # batched matrix x broadcasted matrix >>> tensor1 = torch.randn(10, 3, 4) >>> tensor2 = torch.randn(4, 5) >>> torch.matmul(tensor1, tensor2).size() torch.Size([10, 3, 5])
-
torch.
matrix_power
(input, n) → Tensor¶ Returns the matrix raised to the power
n
for square matrices. For batch of matrices, each individual matrix is raised to the powern
.If
n
is negative, then the inverse of the matrix (if invertible) is raised to the powern
. For a batch of matrices, the batched inverse (if invertible) is raised to the powern
. Ifn
is 0, then an identity matrix is returned.Example:
>>> a = torch.randn(2, 2, 2) >>> a tensor([[[-1.9975, -1.9610], [ 0.9592, -2.3364]], [[-1.2534, -1.3429], [ 0.4153, -1.4664]]]) >>> torch.matrix_power(a, 3) tensor([[[ 3.9392, -23.9916], [ 11.7357, -0.2070]], [[ 0.2468, -6.7168], [ 2.0774, -0.8187]]])
-
torch.
matrix_rank
(input, tol=None, symmetric=False, *, out=None) → Tensor¶ Returns the numerical rank of a 2-D tensor. The method to compute the matrix rank is done using SVD by default. If
symmetric
isTrue
, theninput
is assumed to be symmetric, and the computation of the rank is done by obtaining the eigenvalues.tol
is the threshold below which the singular values (or the eigenvalues whensymmetric
isTrue
) are considered to be 0. Iftol
is not specified,tol
is set toS.max() * max(S.size()) * eps
where S is the singular values (or the eigenvalues whensymmetric
isTrue
), andeps
is the epsilon value for the datatype ofinput
.Note
torch.matrix_rank()
is deprecated. Please usetorch.linalg.matrix_rank()
instead. The parametersymmetric
was renamed intorch.linalg.matrix_rank()
tohermitian
.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.eye(10) >>> torch.matrix_rank(a) tensor(10) >>> b = torch.eye(10) >>> b[0, 0] = 0 >>> torch.matrix_rank(b) tensor(9)
-
torch.
mm
(input, mat2, *, out=None) → Tensor¶ Performs a matrix multiplication of the matrices
input
andmat2
.If
input
is a \((n \times m)\) tensor,mat2
is a \((m \times p)\) tensor,out
will be a \((n \times p)\) tensor.Note
This function does not broadcast. For broadcasting matrix products, see
torch.matmul()
.Supports strided and sparse 2-D tensors as inputs, autograd with respect to strided inputs.
This operator supports TensorFloat32.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.mm(mat1, mat2) tensor([[ 0.4851, 0.5037, -0.3633], [-0.0760, -3.6705, 2.4784]])
-
torch.
mv
(input, vec, *, out=None) → Tensor¶ Performs a matrix-vector product of the matrix
input
and the vectorvec
.If
input
is a \((n \times m)\) tensor,vec
is a 1-D tensor of size \(m\),out
will be 1-D of size \(n\).Note
This function does not broadcast.
- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> mat = torch.randn(2, 3) >>> vec = torch.randn(3) >>> torch.mv(mat, vec) tensor([ 1.0404, -0.6361])
-
torch.
orgqr
(input, input2) → Tensor¶ Computes the orthogonal matrix Q of a QR factorization, from the (input, input2) tuple returned by
torch.geqrf()
.This directly calls the underlying LAPACK function ?orgqr. See LAPACK documentation for orgqr for further details.
- Parameters
input (Tensor) – the a from
torch.geqrf()
.input2 (Tensor) – the tau from
torch.geqrf()
.
-
torch.
ormqr
(input, input2, input3, left=True, transpose=False) → Tensor¶ Multiplies mat (given by
input3
) by the orthogonal Q matrix of the QR factorization formed bytorch.geqrf()
that is represented by (a, tau) (given by (input
,input2
)).This directly calls the underlying LAPACK function ?ormqr. See LAPACK documentation for ormqr for further details.
- Parameters
input (Tensor) – the a from
torch.geqrf()
.input2 (Tensor) – the tau from
torch.geqrf()
.input3 (Tensor) – the matrix to be multiplied.
-
torch.
pinverse
(input, rcond=1e-15) → Tensor¶ Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor. Please look at Moore-Penrose inverse for more details
Note
torch.pinverse()
is deprecated. Please usetorch.linalg.pinv()
instead which includes new parametershermitian
andout
.Note
This method is implemented using the Singular Value Decomposition.
Note
The pseudo-inverse is not necessarily a continuous function in the elements of the matrix [1]. Therefore, derivatives are not always existent, and exist for a constant rank only [2]. However, this method is backprop-able due to the implementation by using SVD results, and could be unstable. Double-backward will also be unstable due to the usage of SVD internally. See
svd()
for more details.Note
Supports real and complex inputs. Batched version for complex inputs is only supported on the CPU.
- Parameters
- Returns
The pseudo-inverse of
input
of dimensions \((*, n, m)\)
Example:
>>> input = torch.randn(3, 5) >>> input tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132], [-1.1143, -0.3662, 0.3042, 1.6374, -0.9294], [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]]) >>> torch.pinverse(input) tensor([[ 0.0600, -0.1933, -0.2090], [-0.0903, -0.0817, -0.4752], [-0.7124, -0.1631, -0.2272], [ 0.1356, 0.3933, -0.5023], [-0.0308, -0.1725, -0.5216]]) >>> # Batched pinverse example >>> a = torch.randn(2,6,3) >>> b = torch.pinverse(a) >>> torch.matmul(b, a) tensor([[[ 1.0000e+00, 1.6391e-07, -1.1548e-07], [ 8.3121e-08, 1.0000e+00, -2.7567e-07], [ 3.5390e-08, 1.4901e-08, 1.0000e+00]], [[ 1.0000e+00, -8.9407e-08, 2.9802e-08], [-2.2352e-07, 1.0000e+00, 1.1921e-07], [ 0.0000e+00, 8.9407e-08, 1.0000e+00]]])
-
torch.
qr
(input, some=True, *, out=None)¶ Computes the QR decomposition of a matrix or a batch of matrices
input
, and returns a namedtuple (Q, R) of tensors such that \(\text{input} = Q R\) with \(Q\) being an orthogonal matrix or batch of orthogonal matrices and \(R\) being an upper triangular matrix or batch of upper triangular matrices.If
some
isTrue
, then this function returns the thin (reduced) QR factorization. Otherwise, ifsome
isFalse
, this function returns the complete QR factorization.Warning
torch.qr
is deprecated. Please usetorch.linalg.qr()
instead.Differences with
torch.linalg.qr
:torch.linalg.qr
takes a string parametermode
instead ofsome
:some=True
is equivalent ofmode='reduced'
: both are the defaultsome=False
is equivalent ofmode='complete'
.
Warning
If you plan to backpropagate through QR, note that the current backward implementation is only well-defined when the first \(\min(input.size(-1), input.size(-2))\) columns of
input
are linearly independent. This behavior will propably change once QR supports pivoting.Note
This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs, and may produce different (valid) decompositions on different device types or different platforms.
- Parameters
input (Tensor) – the input tensor of size \((*, m, n)\) where * is zero or more batch dimensions consisting of matrices of dimension \(m \times n\).
some (bool, optional) –
Set to
True
for reduced QR decomposition andFalse
for complete QR decomposition. If k = min(m, n) then:some=True
: returns (Q, R) with dimensions (m, k), (k, n) (default)'some=False'
: returns (Q, R) with dimensions (m, m), (m, n)
- Keyword Arguments
out (tuple, optional) – tuple of Q and R tensors. The dimensions of Q and R are detailed in the description of
some
above.
Example:
>>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> q, r = torch.qr(a) >>> q tensor([[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [ 0.2857, -0.1714, 0.9429]]) >>> r tensor([[ -14.0000, -21.0000, 14.0000], [ 0.0000, -175.0000, 70.0000], [ 0.0000, 0.0000, -35.0000]]) >>> torch.mm(q, r).round() tensor([[ 12., -51., 4.], [ 6., 167., -68.], [ -4., 24., -41.]]) >>> torch.mm(q.t(), q).round() tensor([[ 1., 0., 0.], [ 0., 1., -0.], [ 0., -0., 1.]]) >>> a = torch.randn(3, 4, 5) >>> q, r = torch.qr(a, some=False) >>> torch.allclose(torch.matmul(q, r), a) True >>> torch.allclose(torch.matmul(q.transpose(-2, -1), q), torch.eye(5)) True
-
torch.
svd
(input, some=True, compute_uv=True, *, out=None)¶ Computes the singular value decomposition of either a matrix or batch of matrices
input
. The singular value decomposition is represented as a namedtuple (U,S,V), such thatinput
= U diag(S) Vᴴ, where Vᴴ is the transpose of V for the real-valued inputs, or the conjugate transpose of V for the complex-valued inputs. Ifinput
is a batch of tensors, then U, S, and V are also batched with the same batch dimensions asinput
.If
some
isTrue
(default), the method returns the reduced singular value decomposition i.e., if the last two dimensions ofinput
are m and n, then the returned U and V matrices will contain only min(n, m) orthonormal columns.If
compute_uv
isFalse
, the returned U and V will be zero-filled matrices of shape (m × m) and (n × n) respectively, and the same device asinput
. Thesome
argument has no effect whencompute_uv
isFalse
.Supports input of float, double, cfloat and cdouble data types. The dtypes of U and V are the same as
input
’s. S will always be real-valued, even ifinput
is complex.Warning
torch.svd()
is deprecated. Please usetorch.linalg.svd()
instead, which is similar to NumPy’snumpy.linalg.svd
.Note
Differences with
torch.linalg.svd()
:some
is the opposite oftorch.linalg.svd()
’sfull_matricies
. Note that default value for both isTrue
, so the default behavior is effectively the opposite.torch.svd()
returns V, whereastorch.linalg.svd()
returns Vᴴ.If
compute_uv=False
,torch.svd()
returns zero-filled tensors forU
andVh
, whereastorch.linalg.svd()
returns empty tensors.
Note
The singular values are returned in descending order. If
input
is a batch of matrices, then the singular values of each matrix in the batch is returned in descending order.Note
The implementation of SVD on CPU uses the LAPACK routine ?gesdd (a divide-and-conquer algorithm) instead of ?gesvd for speed. Analogously, the SVD on GPU uses the cuSOLVER routines gesvdj and gesvdjBatched on CUDA 10.1.243 and later, and uses the MAGMA routine gesdd on earlier versions of CUDA.
Note
The returned matrix U will be transposed, i.e. with strides
U.contiguous().transpose(-2, -1).stride()
.Note
Gradients computed using U and V may be unstable if
input
is not full rank or has non-unique singular values.Note
When
some
=False
, the gradients onU[..., :, min(m, n):]
andV[..., :, min(m, n):]
will be ignored in backward as those vectors can be arbitrary bases of the subspaces.Note
The S tensor can only be used to compute gradients if
compute_uv
is True.Note
With the complex-valued input the backward operation works correctly only for gauge invariant loss functions. Please look at Gauge problem in AD for more details.
Note
Since U and V of an SVD is not unique, each vector can be multiplied by an arbitrary phase factor \(e^{i \phi}\) while the SVD result is still correct. Different platforms, like Numpy, or inputs on different device types, may produce different U and V tensors.
- Parameters
input (Tensor) – the input tensor of size (*, m, n) where * is zero or more batch dimensions consisting of (m × n) matrices.
some (bool, optional) – controls whether to compute the reduced or full decomposition, and consequently the shape of returned U and V. Defaults to True.
compute_uv (bool, optional) – option whether to compute U and V or not. Defaults to True.
- Keyword Arguments
out (tuple, optional) – the output tuple of tensors
Example:
>>> a = torch.randn(5, 3) >>> a tensor([[ 0.2364, -0.7752, 0.6372], [ 1.7201, 0.7394, -0.0504], [-0.3371, -1.0584, 0.5296], [ 0.3550, -0.4022, 1.5569], [ 0.2445, -0.0158, 1.1414]]) >>> u, s, v = torch.svd(a) >>> u tensor([[ 0.4027, 0.0287, 0.5434], [-0.1946, 0.8833, 0.3679], [ 0.4296, -0.2890, 0.5261], [ 0.6604, 0.2717, -0.2618], [ 0.4234, 0.2481, -0.4733]]) >>> s tensor([2.3289, 2.0315, 0.7806]) >>> v tensor([[-0.0199, 0.8766, 0.4809], [-0.5080, 0.4054, -0.7600], [ 0.8611, 0.2594, -0.4373]]) >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) tensor(8.6531e-07) >>> a_big = torch.randn(7, 5, 3) >>> u, s, v = torch.svd(a_big) >>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.transpose(-2, -1))) tensor(2.6503e-06)
-
torch.
symeig
(input, eigenvectors=False, upper=True, *, out=None)¶ This function returns eigenvalues and eigenvectors of a real symmetric matrix
input
or a batch of real symmetric matrices, represented by a namedtuple (eigenvalues, eigenvectors).This function calculates all eigenvalues (and vectors) of
input
such that \(\text{input} = V \text{diag}(e) V^T\).The boolean argument
eigenvectors
defines computation of both eigenvectors and eigenvalues or eigenvalues only.If it is
False
, only eigenvalues are computed. If it isTrue
, both eigenvalues and eigenvectors are computed.Since the input matrix
input
is supposed to be symmetric, only the upper triangular portion is used by default.If
upper
isFalse
, then lower triangular portion is used.Note
The eigenvalues are returned in ascending order. If
input
is a batch of matrices, then the eigenvalues of each matrix in the batch is returned in ascending order.Note
Irrespective of the original strides, the returned matrix V will be transposed, i.e. with strides V.contiguous().transpose(-1, -2).stride().
Warning
Extra care needs to be taken when backward through outputs. Such operation is only stable when all eigenvalues are distinct and becomes less stable the smaller \(\min_{i \neq j} |\lambda_i - \lambda_j|\) is.
- Parameters
input (Tensor) – the input tensor of size \((*, n, n)\) where * is zero or more batch dimensions consisting of symmetric matrices.
eigenvectors (bool, optional) – controls whether eigenvectors have to be computed
upper (boolean, optional) – controls whether to consider upper-triangular or lower-triangular region
- Keyword Arguments
out (tuple, optional) – the output tuple of (Tensor, Tensor)
- Returns
A namedtuple (eigenvalues, eigenvectors) containing
eigenvalues (Tensor): Shape \((*, m)\). The eigenvalues in ascending order.
eigenvectors (Tensor): Shape \((*, m, m)\). If
eigenvectors=False
, it’s an empty tensor. Otherwise, this tensor contains the orthonormal eigenvectors of theinput
.
- Return type
Examples:
>>> a = torch.randn(5, 5) >>> a = a + a.t() # To make a symmetric >>> a tensor([[-5.7827, 4.4559, -0.2344, -1.7123, -1.8330], [ 4.4559, 1.4250, -2.8636, -3.2100, -0.1798], [-0.2344, -2.8636, 1.7112, -5.5785, 7.1988], [-1.7123, -3.2100, -5.5785, -2.6227, 3.1036], [-1.8330, -0.1798, 7.1988, 3.1036, -5.1453]]) >>> e, v = torch.symeig(a, eigenvectors=True) >>> e tensor([-13.7012, -7.7497, -2.3163, 5.2477, 8.1050]) >>> v tensor([[ 0.1643, 0.9034, -0.0291, 0.3508, 0.1817], [-0.2417, -0.3071, -0.5081, 0.6534, 0.4026], [-0.5176, 0.1223, -0.0220, 0.3295, -0.7798], [-0.4850, 0.2695, -0.5773, -0.5840, 0.1337], [ 0.6415, -0.0447, -0.6381, -0.0193, -0.4230]]) >>> a_big = torch.randn(5, 2, 2) >>> a_big = a_big + a_big.transpose(-2, -1) # To make a_big symmetric >>> e, v = a_big.symeig(eigenvectors=True) >>> torch.allclose(torch.matmul(v, torch.matmul(e.diag_embed(), v.transpose(-2, -1))), a_big) True