Shortcuts

torch.utils.data

class torch.utils.data.Dataset(*args, **kwds)[source]

An abstract class representing a Dataset.

All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite __getitem__(), supporting fetching a data sample for a given key. Subclasses could also optionally overwrite __len__(), which is expected to return the size of the dataset by many Sampler implementations and the default options of DataLoader.

Note

DataLoader by default constructs a index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided.

class torch.utils.data.TensorDataset(*tensors: torch.Tensor)[source]

Dataset wrapping tensors.

Each sample will be retrieved by indexing tensors along the first dimension.

Parameters

*tensors (Tensor) – tensors that have the same size of the first dimension.

class torch.utils.data.ConcatDataset(datasets: Iterable[torch.utils.data.dataset.Dataset])[source]

Dataset as a concatenation of multiple datasets.

This class is useful to assemble different existing datasets.

Parameters

datasets (sequence) – List of datasets to be concatenated

class torch.utils.data.Subset(dataset: torch.utils.data.dataset.Dataset[T_co], indices: Sequence[int])[source]

Subset of a dataset at specified indices.

Parameters
  • dataset (Dataset) – The whole Dataset

  • indices (sequence) – Indices in the whole set selected for subset

class torch.utils.data.DataLoader(dataset: torch.utils.data.dataset.Dataset[T_co], batch_size: Optional[int] = 1, shuffle: bool = False, sampler: Optional[torch.utils.data.sampler.Sampler[int]] = None, batch_sampler: Optional[torch.utils.data.sampler.Sampler[Sequence[int]]] = None, num_workers: int = 0, collate_fn: Optional[Callable[List[T], Any]] = None, pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: Optional[Callable[int, None]] = None, multiprocessing_context=None, generator=None, *, prefetch_factor: int = 2, persistent_workers: bool = False)[source]

Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset.

The DataLoader supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning.

See torch.utils.data documentation page for more details.

Parameters
  • dataset (Dataset) – dataset from which to load the data.

  • batch_size (int, optional) – how many samples per batch to load (default: 1).

  • shuffle (bool, optional) – set to True to have the data reshuffled at every epoch (default: False).

  • sampler (Sampler or Iterable, optional) – defines the strategy to draw samples from the dataset. Can be any Iterable with __len__ implemented. If specified, shuffle must not be specified.

  • batch_sampler (Sampler or Iterable, optional) – like sampler, but returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and drop_last.

  • num_workers (int, optional) – how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)

  • collate_fn (callable, optional) – merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.

  • pin_memory (bool, optional) – If True, the data loader will copy Tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your collate_fn returns a batch that is a custom type, see the example below.

  • drop_last (bool, optional) – set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: False)

  • timeout (numeric, optional) – if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: 0)

  • worker_init_fn (callable, optional) – If not None, this will be called on each worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)

  • prefetch_factor (int, optional, keyword-only arg) – Number of samples loaded in advance by each worker. 2 means there will be a total of 2 * num_workers samples prefetched across all workers. (default: 2)

  • persistent_workers (bool, optional) – If True, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. (default: False)

Warning

If the spawn start method is used, worker_init_fn cannot be an unpicklable object, e.g., a lambda function. See multiprocessing-best-practices on more details related to multiprocessing in PyTorch.

Warning

len(dataloader) heuristic is based on the length of the sampler used. When dataset is an IterableDataset, it instead returns an estimate based on len(dataset) / batch_size, with proper rounding depending on drop_last, regardless of multi-process loading configurations. This represents the best guess PyTorch can make because PyTorch trusts user dataset code in correctly handling multi-process loading to avoid duplicate data.

However, if sharding results in multiple workers having incomplete last batches, this estimate can still be inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one batch worth of samples can be dropped when drop_last is set. Unfortunately, PyTorch can not detect such cases in general.

See `Dataset Types`_ for more details on these two types of datasets and how IterableDataset interacts with `Multi-process data loading`_.

Warning

See reproducibility, and My data loader workers return identical random numbers, and data-loading-randomness notes for random seed related questions.

torch.utils.data.random_split(dataset: torch.utils.data.dataset.Dataset[T], lengths: Sequence[int], generator: Optional[torch._C.Generator] = <torch._C.Generator object>)List[torch.utils.data.dataset.Subset[T]][source]

Randomly split a dataset into non-overlapping new datasets of given lengths. Optionally fix the generator for reproducible results, e.g.:

>>> random_split(range(10), [3, 7], generator=torch.Generator().manual_seed(42))
Parameters
  • dataset (Dataset) – Dataset to be split

  • lengths (sequence) – lengths of splits to be produced

  • generator (Generator) – Generator used for the random permutation.

class torch.utils.data.Sampler(data_source: Optional[collections.abc.Sized])[source]

Base class for all Samplers.

Every Sampler subclass has to provide an __iter__() method, providing a way to iterate over indices of dataset elements, and a __len__() method that returns the length of the returned iterators.

Note

The __len__() method isn’t strictly required by DataLoader, but is expected in any calculation involving the length of a DataLoader.

class torch.utils.data.SequentialSampler(data_source)[source]

Samples elements sequentially, always in the same order.

Parameters

data_source (Dataset) – dataset to sample from

class torch.utils.data.RandomSampler(data_source: collections.abc.Sized, replacement: bool = False, num_samples: Optional[int] = None, generator=None)[source]

Samples elements randomly. If without replacement, then sample from a shuffled dataset. If with replacement, then user can specify num_samples to draw.

Parameters
  • data_source (Dataset) – dataset to sample from

  • replacement (bool) – samples are drawn on-demand with replacement if True, default=``False``

  • num_samples (int) – number of samples to draw, default=`len(dataset)`. This argument is supposed to be specified only when replacement is True.

  • generator (Generator) – Generator used in sampling.

class torch.utils.data.SubsetRandomSampler(indices: Sequence[int], generator=None)[source]

Samples elements randomly from a given list of indices, without replacement.

Parameters
  • indices (sequence) – a sequence of indices

  • generator (Generator) – Generator used in sampling.

class torch.utils.data.WeightedRandomSampler(weights: Sequence[float], num_samples: int, replacement: bool = True, generator=None)[source]

Samples elements from [0,..,len(weights)-1] with given probabilities (weights).

Parameters
  • weights (sequence) – a sequence of weights, not necessary summing up to one

  • num_samples (int) – number of samples to draw

  • replacement (bool) – if True, samples are drawn with replacement. If not, they are drawn without replacement, which means that when a sample index is drawn for a row, it cannot be drawn again for that row.

  • generator (Generator) – Generator used in sampling.

Example

>>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
[4, 4, 1, 4, 5]
>>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
[0, 1, 4, 3, 2]
class torch.utils.data.BatchSampler(sampler: torch.utils.data.sampler.Sampler[int], batch_size: int, drop_last: bool)[source]

Wraps another sampler to yield a mini-batch of indices.

Parameters
  • sampler (Sampler or Iterable) – Base sampler. Can be any iterable object

  • batch_size (int) – Size of mini-batch.

  • drop_last (bool) – If True, the sampler will drop the last batch if its size would be less than batch_size

Example

>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
class torch.utils.data.distributed.DistributedSampler(dataset: torch.utils.data.dataset.Dataset, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True, seed: int = 0, drop_last: bool = False)[source]

Sampler that restricts data loading to a subset of the dataset.

It is especially useful in conjunction with torch.nn.parallel.DistributedDataParallel. In such a case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it.

Note

Dataset is assumed to be of constant size.

Parameters
  • dataset – Dataset used for sampling.

  • num_replicas (int, optional) – Number of processes participating in distributed training. By default, world_size is retrieved from the current distributed group.

  • rank (int, optional) – Rank of the current process within num_replicas. By default, rank is retrieved from the current distributed group.

  • shuffle (bool, optional) – If True (default), sampler will shuffle the indices.

  • seed (int, optional) – random seed used to shuffle the sampler if shuffle=True. This number should be identical across all processes in the distributed group. Default: 0.

  • drop_last (bool, optional) – if True, then the sampler will drop the tail of the data to make it evenly divisible across the number of replicas. If False, the sampler will add extra indices to make the data evenly divisible across the replicas. Default: False.

Warning

In distributed mode, calling the set_epoch() method at the beginning of each epoch before creating the DataLoader iterator is necessary to make shuffling work properly across multiple epochs. Otherwise, the same ordering will be always used.

Example:

>>> sampler = DistributedSampler(dataset) if is_distributed else None
>>> loader = DataLoader(dataset, shuffle=(sampler is None),
...                     sampler=sampler)
>>> for epoch in range(start_epoch, n_epochs):
...     if is_distributed:
...         sampler.set_epoch(epoch)
...     train(loader)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources